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Abstract—Distance estimation for marine vessels is of vital 

importance to unmanned ship vehicles (USVs) for navigation and 

collision prevention. This can be achieved by means such as radar 

or laser sighting. However, due to constraints of the USV, it may 

be desired to estimate distance using a monocular camera. In this 

paper, we propose a method that, given a video of a marine vehicle 

in a maritime environment and a tracker, estimates the distance of 

the tracked vehicle from the camera. The method detects the 

horizon and uses its distance as a reference. It detects the contact 

point of the vehicle with the sea surface by finding a maximally 

stable extremal region (MSER). Then, it relies on geometries of the 

earth and on optical properties of the camera to compute the 

distance. The method was tested on video footage of several sea 

maneuvers with an average error of 7.1%.  

Keywords— unmanned ship vehicles; USV; distance estimation; 

horizon detection; marine navigation  

I.  INTRODUCTION 

Unmanned ship vehicles (USVs) are vehicles that operate on 
the surface of the water without a crew. These vehicles are 
witnessing an increasing interest in both academia and industry 
due to their numerous applications for research, defense 
missions, and for commercial purposes [1, 2]. USVs are 
attractive for surveillance applications, like patrolling and 
maintaining harbors or other “crucial” sites safeguarded against 
intruders, as they can identify the level of menace of an unknown 
radar track, exposing no human operators to possible threats [3]. 
Highly autonomous USVs are desired in order to decrease 
human operator's involvement and for improved ability to deal 
with communication failures. An important requirement for an 
autonomous USV is the ability to navigate and avoid collisions 
with obstacles in its environment [4]. Typically, static obstacles 
such as islands and immobile constructs can be mapped in 
advance to a world model, but dynamic obstacles, such as boats 
and water scooters, need to be detected and continuously tracked 
to avoid collision. Once tracking commences, the range and 
azimuth of the obstacle from the USV is estimated using GPS 
and its position serves as input to a navigation algorithm. 

The task we deal with in this paper is distance estimation of 
dynamic obstacles on the sea surface, specifically marine 
vehicles. Distance estimation of marine vehicles can be achieved 
by several methods, such as stereo vision [3, 5, 6], laser sighting 
[7, 8], or radar [3, 7]. The maritime environment is challenging 
for many types of sensors due to the fast rate of change it 
experiences from waves, weather and sea traffic. Therefore, it is 
difficult to achieve accurate detection, tracking, and ultimately 

distance estimation with only one sensor type. Hence, a common 
approach to tackling these problems is using multiple types of 
sensors and performing sensor fusion, namely, the merging of 
the output of several sensor types to achieve an accurate result 
[3, 7]. However, due to the constraints of the USV's size and the 
cost of equipping it with additional sensors, especially if 360 
degrees coverage is required, it may be desired to estimate the 
distance of marine vehicles with a monocular video camera. 
Another advantage of distance estimation using a monocular 
camera is that it is a passive sensor, requiring no transmission of 
any signal, which makes it useful for defense applications. As 
with other sensor types, processing of vision video footage of 
maritime environments is challenging due to the fast rate of 
change of the sea surface and other environmental effects. 
Maritime videos are affected by high noise, and objects are 
characterized by a low contrast (due to their large distance to the 
camera, humidity, fog, bad lighting conditions, etc.). 
Furthermore, the camera is constantly moving, and the 
background is highly dynamic, thus making it difficult to 
distinguish between object pixels and background ones [9]. 
Therefore, traditional approaches in image and video processing 
often fail to produce accurate results in such scenarios. 
Examples of previous vision-based works for detection, 
tracking, and segmentation of objects, in a maritime 
environment, can be found in [9-13].  

In the following section, we present a novel method to 
estimate the distance of marine vehicles using a monocular 
video camera. To the best of our knowledge, only [3, 13] suggest 
to perform such a task using a monocular video camera. 
However, [3] lacks a full description of the method and presents 
no results and [13] assumes a geo-stationary camera. The 
proposed method receives a grayscale video of a marine 
environment, along with tracking information of an object in the 
form of  (𝑥, 𝑦) coordinates for each frame. Tracking coordinates 
are assumed to be on, or very close to, the tracked object. The 
contact point of the tracked vehicle with the sea surface is 
determined, and then, using the horizon as a reference and the 
specifications of the camera, we infer the distance of that point. 
The output of the method is the distance of the tracked object 
from the camera's location.  

The paper is organized as follows. In section II we describe 
the proposed method for distance estimation. In section III we 
present the experiment conducted to test the method and the 
results are compared to ground truth distance. Finally, in section 
IV we conclude our work.  



II. DISTANCE ESTIMATION 

A. General description 

To better explain the basic idea behind the proposed method, 
we neglect camera movement caused by the movement of the 
USV. We therefore assume, for the sake of simplicity, that the 
USV is immobile and that the camera's position remains 
constant. We will remove this assumption in the following 
subsections. A general scheme of the problem setup is given in 
Fig. 1. A camera mounted on a USV at height ℎ captures an 
image of an object. Consider a pixel 𝑝 on the sea surface 
representing the object captured by the camera. This pixel 
corresponds to a distance 𝑑 from the USV. To calculate the 
distance 𝑑, we should calculate the angle between the line of 
sight to a small sea surface area that the pixel 𝑝 represents and 
the line connecting the camera to the center of the earth. Thus, if 
we know the height of the camera ℎ and the angle 𝛼 + 𝜑 
described above, and under the assumption that each pixel 
captures approximately the same solid angle in space, we can 
calculate the distance using simple trigonometry. Notice that not 
all pixels composing the needed angle are captured by the 
camera since its field of view (FOV) begins only at an angle 𝜑. 
However, assuming the camera's position in relation to the USV 
is constant, 𝜑 remains constant and can be measured. Hence, the 
angle we require is the sum of the angle 𝜑 corresponding to the 
beginning of field of view, and the angle 𝛼 corresponding to the 
number of pixels between 𝑝 and the bottom of the video frame. 

Based on the geometrical explanation described above, the 
major problem that remains is to relate a meaningful pixel 𝑝 to 
each tracked object. Since one purpose of our work is to provide 
support for autonomous navigation, the pixel that should be 
chosen is the pixel representing the closest point of the tracked 
object to the camera. A good pixel to choose is a pixel 
representing the area where the object touches the sea surface. 
Intuitively, pixels representing the sea surface closer to the 
horizon correspond to greater distances from the camera than 
pixels farther from the horizon. Neglecting protruding sharp 
features the object might have, the best pixel for our application 
is the pixel farthest from the horizon, thus representing the 
closest possible distance of the tracked object to the camera. 

A scheme of the proposed method is depicted in Fig. 2. The 
inputs are a video frame and a tracker output coordinates in that 
frame. First, the horizon line is detected in the video frame. 
Then, we detect a region of interest (ROI) of the tracked object. 
This ROI is obtained using extraction of stable regions and 
selection of the region whose centroid is the closest to the tracker 
output coordinates. We proceed to inspect the pixels on the 
boundary of the ROI and calculate the distance in pixels of each 
such pixel from the horizon line. We choose only the pixel the 
farthest from the horizon line and use the pixel's coordinates, 
along with the camera specifications and horizon incline angle 
to calculate the distance of the tracked object in meters. In the 
following subsections we further elaborate on these steps. 

B. Horizon Detection 

Correct horizon detection is critical for accurate algorithm 
performance. The horizon in a video frame may be tilted and 
raised or lowered due to the USV's movement. To calculate the 
correct distance, pixels need to be counted along a line 
perpendicular to the horizon. Furthermore, the USV may have a 
pitch angle which determines the angle of the beginning of FOV. 
Several previous works in the literature deal with horizon 
detection in a maritime environment. A recent comparison of 
state-of-the-art horizon detection techniques is given in [14, 15]. 
However, the techniques are tested on easy scenarios and usually 
perform poorly in more realistic maritime video footage. In this 
subsection we describe a horizon detection method that we have 
developed. It is based on [14, 15] with several improvements and 
modifications to increase its robustness to harsh environmental 
conditions. 

Fig. 3 depicts the proposed method for horizon line 
detection. Horizon detection begins with morphological erosion 
of the image using a small circular mask. This is done in order 
to remove small features that may be located near the horizon 
line and to reduce false positives from sea waves. Sun glare was 
not apparent in the input images of [14, 15], so next we use 
histogram equalization to reduce its effects in the image. We 
proceed by applying Canny edge detection to get an edge map 
of the image. Typically at this point the edge map contains large 
parts of the horizon line, along with many small edges detected 
due to waves on the sea surface. Unlike [14, 15], we eliminate 
many of those irrelevant edges by removing all edges whose 

Fig. 1.  Problem setup. A camera mounted at height 𝒉 captures an image of an 

object at distance 𝒅. The object is represented by a pixel 𝒑. φ is the angle from 

the line connecting the camera to the center of the earth to the beginning of the 

FOV of the camera. α is the angle between the beginning of the FOV to 𝒑. 

Fig. 2. Distance estimation. 



number of pixels is smaller than a pre-determined threshold, thus 
reducing the noise in the edge map. Next, the Hough transform 
of the edge map is computed in order to detect straight edges. 
The Hough transform detects straight lines using a voting 
procedure. We ignore lines that are nearly vertical, which appear 
in case of sun glare in the image. Then, we choose the 
parameters of angle and height of the line that correspond to the 
maximal number of votes. Finally, for smoothing the decision 
and removing transient false detections, we apply a temporal 
median filter of size 3 on the height and angle of the detected 
horizon lines. 

C. ROI Detection 

Ideally, we would like to segment the tracked object from the 
maritime background. However, performing such segmentation 
is a difficult problem, as common approaches for foreground 
segmentation are not effective for maritime environment 
footage. Moreover, even previous works that deal specifically 
with segmentation in a maritime environment such as [9, 11] are 
inappropriate for our problem setup. They assume an immobile 
camera, are confused by the object wake or may result in 
erroneous segmentation of the object. A more suitable approach 
to the problem at hand is to segment either the object or 
relatively small parts of its wake. Both are acceptable for the 
next stage of the algorithm, where we choose a pixel 
representing the closest point of contact of the tracked object 
with the sea surface. 

Since we cannot assume prior knowledge on the shape, size, 
speed, initial distance and other properties of the tracked object, 
a multiscale image processing method is required. Hence, the 
method chosen is the extraction of maximally stable extremal 
regions (MSER) [16]. This is an efficient multiscale blob 
detection algorithm usually used for stereo matching and object 
recognition. It finds regions that remain stable over a certain 
number of thresholds. A unique contribution of this paper is the 
use of MSER in a maritime environment. MSER is suitable for 
our purpose since a typical marine environment tends not to have 
many MSER regions due to the gradual change of its pixel 
intensities. However, man-made objects and objects' wakes tend 
to be detected as MSER regions, as demonstrated in Fig. 4. Once 
all MSER regions in the image are detected, we choose as  

ROI the one whose centroid is closest to the coordinates supplied 
by the tracker. MSER extraction has two parameters: threshold 
increment and maximal area variation of the extremal areas. We 
set the values of those parameters according to whether the 
image experiences sun glare and, once an estimate of the 
distance of the tracked object is available, according to its 
estimated distance in previous frames. An image experiencing 
sun glare has many detections of irrelevant MSER regions, and 
thus we increase the threshold delta and decrease the maximal 
area variation. Likewise, a closer object has more small visible 
features which can be interpreted as MSER regions which may 
be irrelevant. Therefore, we increase the threshold increment 
and the maximal area variation as a function of the distance 
estimate of the tracked object in previous frames. Currently we 
use a set of conditions to select between a few values of the 
maximal area variation and the threshold increment, but in future 
work a continuous transformation will be tested.  

D. Distance Calculation for a Representing Pixel 

From the ROI we choose only the farthest pixel from the 
horizon line. We then rotate and translate the image according 
to the angle of the detected horizon line so it is not tilted and its 
height in pixels in the frame remains constant through all the 
video frames. We count the number of pixels from the chosen 
pixel to the bottom of the frame and transform the number of 
pixels to an angle according to the camera's FOV. The distance 
of the tracked object is given by (see Fig. 1): 

Fig. 3. Horizon line detection. 

Fig. 4. (a) A video frame of a sailboat and (b) MSER regions (in color) detected 
in it. Note that the regions overlap. The coordinates supplied by the tracker are 

marked as a red cross. The detected horizon is marked as a red straight line. 

(a) 

(b) 



𝑑 = ℎ tan (𝛼 + 𝜑) (1) 
 

Since the distance of the tracked object is continuous, we apply 

a median filter and an averaging filter of a five frame window 

to smooth the results. 

III. RESULTS 

A. Experiment Setup 

An experiment involving three marine vehicles was 
conducted on a day with clear weather and relatively calm sea. 
A CCD camera was installed at a height of about 2.7 meters 
above sea level on one ship, referred to as the recording vessel, 
along with GPS sensors. The camera has an FOV of 24 degrees, 
resolution of 800x600, frame rate of 15Hz and was stationary in 
relation to the recording vessel. Oscillations due to waves that 
affect the recording vessel affect the position of the camera. The 
GPS on the recording vessel was installed very close to the 
location of the camera. GPS units were also installed on the other 

two vessels, referred to as the maneuvering vessels. All GPS 
units are commercial GPS units with 7.8 meters positioning error 
with 95% confidence interval.  The maneuvering vessels were a 
large sailboat and a small rubber boat that conducted several 
maneuvers in the field of view of the camera installed on the 
recording vessel. Ground truth distance between the camera and 
each of the maneuvering vessels was calculated according to the 
GPS coordinates of the recording vessel and the maneuvering 
vessels. The resulting video and the distance of each 
maneuvering vessel were synchronized, so that each frame in the 
video could be associated with a ground truth distance. Tracker 
output coordinates were obtained using a commercial tracker. 
The proposed distance estimation method was then applied 
offline to the experiment data, and the output estimated distance 
was compared to the ground truth. The full algorithm was tested 
on four videos from the experiment, each with duration of 12-17 
seconds. Details of the scenario in these videos are given in the 
caption of Fig. 5.  

(a) (b) 

(c) (d) 
Fig. 5. Distance estimation vs. ground truth measured with a GPS. For each video we measure the mean absolute percentage error (MAPE) and the standard deviation 

(SD). (a) Approaching rubber boat. MAPE=8.7%, SD=7.1%. (b) Sailboat sailing in parallel to the camera. At the same time, the recording boat is approaching the 
sailboat. MAPE=4.8%, SD=4%. (c) Sailboat sailing in parallel to the camera. The horizon line in this video is the line differentiating sea from land. MAPE=7%, 

SD=4.8%. (d) Approaching rubber boat. The horizon line in this video is the line differentiating sea from land. The video contains challenging land background, 

making horizon detection difficult. Mean absolute relative error is MAPE=9%, SD=7%. 



B. Analysis of the Results 

The results of the proposed method for the four experiment 
videos show an average absolute error relative to the GPS 
distance in the range of 4.8% to 9%, giving an overall average 
of 7.1% and a standard deviation of 5.8%, depending on the 
scenario shown in the videos, as presented in Fig. 5. Note that 
the algorithm only provides results after receiving tracker data 
and processing a few frames. The oscillations on the graphs 
seem to be caused by the fluctuating height of the camera, due 
to movement of the USV. These oscillations, and thus the mean 
error, can be reduced in future work by considering ℎ, the height 
of the camera, as a variable. ℎ can be measured by using an 
inertial navigation system (INS). 

Horizon detection proved reliable in all scenarios. In the 
scenarios with land in the background it was somewhat less 
stable, resulting in an increased relative error in distance 
estimation. This effect can be mitigated in future work, using a 
color edge detector which will improve the accuracy of the 
horizon detection in such situations. 

Detected MSER regions on the tracked object sometimes do 
not cover all the object, especially when the object is close to the 
camera and small features on it become visible, such as light 
reflection patches of metallic parts. Another issue with 
extracting MSER regions is that vessels producing less wake and 
foam on the water are more difficult to detect as they have less 
chance of producing MSER regions.  

Running time of the proposed method is about 0.5-2 seconds 
per frame, written in MATLAB, running on a standard quad-
core Windows desktop PC. This is a relatively fast running time 
for video processing applications thus, with an efficient 
implementation, we expect it to be feasible to run the proposed 
method on a USV in real-time. 

Horizon detection is performed at a time complexity of 

𝑂(𝑀𝑁𝑙𝑜𝑔𝑀𝑁) where 𝑀 × 𝑁 is the number of pixels in each 

frame. ROI detection is of time complexity of  𝑂(𝑀𝑁). The rest 

of the blocks in Fig. 2 are also of time complexity of  𝑂(𝑀𝑁). 

Therefore, the time complexity of the entire algorithm is 

𝑂(𝑀𝑁𝑙𝑜𝑔𝑀𝑁). 

IV. CONCLUSIONS 

In this paper, we have proposed a novel method for distance 
estimation of marine vehicles in a challenging maritime 
environment using a monocular video camera. An important 
stage of this method is a robust horizon line detection algorithm. 
Another contribution of this paper is a novel use of MSER 
regions for image processing in a maritime environment. These 
regions are used, together with supplied tracker output 
coordinates, for finding the closest contact point of the vehicle 
with the sea surface. A simple trigonometric formulation based 
on the geometries of the earth and on optical properties of the 
camera, allows us to compute the distance to the tracked object. 
The method was tested on video footage of several sea 
maneuvers. It was able to estimate successfully the distances of 
marine vehicles using no prior knowledge on the vessel’s size, 
shape or velocity. Mean absolute percentage error of 7.1%. and 
standard deviation of 5.8% were achieved for real experiment 

data. The accuracy of the results is suitable for autonomic USV 
navigation. 
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