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ABSTRACT 

 

The High Efficiency Video Coding (HEVC) standard 

provides a substantial improvement in coding efficiency over 

previous video coding standards at the cost of a higher 

computational complexity. HEVC employs a quadtree based 

image structure by partitioning the image into coding units 

(CUs). Finding the optimal CU size in terms of rate-distortion 

is one of the most computationally challenging parts of any 

HEVC encoder. Previous works for fast CU size selection are 

usually based on data dependency between neighboring CUs 

and therefore limit the degree of possible parallelism. In this 

paper, we present a fast CU size selection method that does 

not depend on any data from other CUs in the same frame, 

thus allowing utilization of the high parallel processing 

capability of many-core processors, such as a GPU. 

Experimental results show that the proposed method incurs 

only a negligible loss in rate-distortion performance 

compared with counterpart methods that limit parallelism. 

 

Index Terms— HEVC, coding unit (CU), fast video 

coding, parallelization, GPU 

 

1. INTRODUCTION 

 

High Efficiency Video Coding (HEVC) is the newest video 

coding standard of the ITU-T Video Coding Experts Group 

(VCEG) and the ISO/IEC Moving Picture Experts Group 

(MPEG). It enables substantially increased compression 

performance, compared with previous standards, at the 

expense of increased computational complexity [1]. To 

achieve high compression performance, HEVC replaces 

macroblocks, which were used in previous video coding 

standards, with a quadtree structure, enabling a high level of 

flexibility in the encoding process. HEVC initially divides 

each frame into non-overlapping coding tree units (CTUs) 

that can be of size 16x16, 32x32 or 64x64 pixels. Each CTU 

can be recursively further divided into four smaller quadratic 

blocks called coding units (CUs), down to blocks of size 8x8. 

This recursive subdivision composes a quadtree structure and 

its levels are usually called depths. The quadtree structure 

allows high compression efficiency as smooth stationary 

areas are encoded with large blocks and detailed areas with 

complex motion are encoded with small blocks, resulting in 

a small side-information overhead. Selecting a good quadtree 

partitioning, in terms of rate-distortion, is extremely 

important for achieving high compression efficiency. 

However, since there are many possibilities for partitioning a 

CTU, and since each partitioning under consideration 

requires a rate-distortion optimization of different motion 

estimation and intra prediction modes, this procedure incurs 

a high computational complexity. Therefore, it is required to 

design a clever fast method for CU size selection. 

Several methods for CU size selection have been 

proposed in the literature. Some proposals to speed up CU 

decision are based only on information from the current CU. 

For example, a mathematical model for reducing the number 

of depth checks, based on Bayesian decision rule and 

estimation methods, is introduced in [2]. This algorithm has 

an offline stage applied to a training set of videos. The results 

depend on the provided training set, which may not qualify 

for certain types of videos. Early termination is considered to 

be a simple and efficient technique to reduce encoding time. 

A top-down partitioning of the HEVC quadtree is usually 

performed, pruning the quadtree once a threshold of rate-

distortion cost is reached. An early termination method based 

on analysis of previous SKIP mode CUs is proposed in [3] 

and implemented in the HM4.0 reference software. It is based 

on the observation that if the SKIP mode is chosen as the best 

mode for the current CU, then no further splitting is required. 

This method can only be applied to inter prediction and is 

elaborated for non-SKIP CU modes in [4]. 

Other proposals to speed up CU decision use information 

from the neighboring CUs to select candidate CU sizes. A 

content-based fast CU decision algorithm was developed in 

[5]. The ratio of utilized CUs to total number of CUs in 

different depths at frame level is analyzed and rarely used 

CUs with specified depths are skipped. The analysis used in 

this method is data dependent and is affected by encoding 

configurations. A method that uses an early termination 

approach has been proposed in [6]  based on the adaptive 

weighted average rate-distortion cost of adjacent SKIP mode 

CUs. Methods based on depth information correlation 

between spatial and temporal adjacent CUs and the current 

CU are proposed in [7-10]. They speed up calculation by 

reducing the depth search range. [10] is a revision of the 

method [9] with favorable results compared with counterpart 

algorithms. 



Since the aforementioned fast CU size selection methods 

assume serial computation, the acceleration they can achieve 

is limited. With the recent development of many multicore 

parallel computing platforms, it is possible to further 

accelerate video encoding through parallelization. 

Nowadays, personal computers are typically equipped with a 

highly parallel, powerful, and cost-effective Graphics 

Processing Unit (GPU). Hence, some previous works in the 

literature have proposed to accelerate HEVC encoding using 

a GPU [11-15]. The most computationally demanding part of 

a video encoder is motion estimation. Therefore, most works 

implement this feature on the GPU, while leaving the rest of 

the encoding process for the CPU. Although high speedups 

are achieved by GPU-based motion estimation algorithms, 

further acceleration is still required for practical video 

services. In particular, after accelerating motion estimation, 

CU size selection becomes a major bottleneck. In addition, 

reducing the depth search range of CU sizes may prevent 

unnecessary computations and reduce the computational load 

on both the CPU and the GPU. Parallelizing an HEVC 

encoder CU size selection is difficult due to many 

dependencies at CTU-level within the same frame. One 

approach for CU size selection on many-core processors, 

such as a GPU, is to schedule computations by building a 

directed acyclic graph of dependencies among neighboring 

CTUs [16].  

In this paper, we propose a highly parallel method for CU 

size selection. In contrast to [16], we do not map 

dependencies but remove some of them. The method does not 

depend on any data from other CTUs in the same frame, thus 

allowing easy parallelization for a GPU. 

 

2. FAST SERIAL CU SIZE SELECTION 

 

The CU size selection method proposed in [10] is designed 

for serial computation and gives superior results compared 

with counterpart serial methods. In this section, we describe 

this method in brief as it is a basis for the parallel method we 

propose later in this paper. 

The method described in [10] exploits spatial and 

temporal correlations of a video. CU size selection relies on 

nine previously coded CTUs, divided into two groups: 𝛼 and 

𝛽, as shown in Fig. 1. Out of the CTUs that have already been 

coded in a serial order, these CTUs are the best candidates to 

predict which depths are more probable than the others for 

the current CTU quadtree partitioning [9]. All the CTUs in 

group 𝛼 have higher correlation to the CTU being evaluated 

than those in group 𝛽 [9]. The four CTUs in group 𝛼 are first 

checked for the depths they adopted. Then, if needed, the five 

CTUs in group 𝛽 are also checked for the depths they 

adopted. One of the major contributions of this method 

compared with counterpart methods is that depths are 

checked in neighboring CTUs only in CUs that are in a small 

strip of size 𝑅 = 8 around the CTU being evaluated. This 

strip is depicted in Fig. 2. Using depth information only from 

CUs that are in a small strip around the CTU being evaluated, 

raises spatial correlation, leading to more accurate depth 

information. 

According to the quadtree depths adopted by neighboring 

CUs in a strip of size 𝑅, four similarity degree classes are 

defined - high similarity, medium-high similarity, medium-

low similarity and low similarity. Low similarity indicates 

that all depths are adopted in group 𝛼, hence no conclusive 

decision can be made on possible depths of the evaluated 

CTU. In this case, 3 out of the 4 possible depths are checked, 

discarding depth 0 (no partitioning of the CTU) or depth 3 

(smallest possible CUs). The depth to discard is selected 

based on the depths of 𝐼, the collocated CTU in the reference 

frame. High similarity indicates that all the CTUs in group 𝛼 

adopted a single depth. If all the CTUs in group 𝛽 also 

adopted the same depth, this depth is selected for the 

evaluated CTU. Otherwise, an additional neighbor depth is 

checked. In many cases, low or high similarity conditions are 

not met since two or three depths are adopted by the CTUs in 

group 𝛼. Such medium-similarity CTUs have a tendency to 

be either more neighbor-dependent, or not. Those more 

correlated to neighboring CTUs, i.e., the CTUs in their 

group 𝛼 adopted two depth levels, are classified as medium-

high similarity. Medium-low similarity is used to handle 

cases where group 𝛼 adopted three depth levels. For medium-

low similarity CTUs, since a single depth is not adopted by 

any of the CTUs in group 𝛼, this depth is discarded. A second 

depth can be further discarded if one depth is adopted by all 

the CTUs in group 𝛼, and another depth is adopted only by a 

single CTU in group 𝛼. If two depths are adopted each by one 

CTU in group 𝛼, the depth discarded is the one with the 

greater distance to the CTU adopted by all the neighboring 

CTUs. For medium-high similarity, although two depths are 

not adopted by group 𝛼, one, two or three depths may be 

checked. Three depths are checked if group 𝛽 adopted a depth 

Fig. 2. The depth information extracting region decided by 

𝑹 in the current frame according to [10]. 
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Fig. 1. Neighboring CTUs of the current CTU used in [10] 

for CU size selection. 𝜶 = {𝑨, 𝑩, 𝑪, 𝑰}, 𝜷 = {𝑫, 𝑬, 𝑭, 𝑮,𝑯} 
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not adopted by group 𝛼. If group 𝛽 adopted two such depths, 

only the depth with a greater number of occurrences is 

additionally checked. One depth is checked if group 𝛽 

adopted no new depths and CTU 𝐶 is the only CTU to adopt 

one of the two depths. This is done due to the relatively low 

correlation in group 𝛼 of CTU 𝐶 to the evaluated CTU. 

Otherwise, two depths are checked. The aforementioned 

procedure for fast CU selection is summarized in Table 1.  

 

3. FAST PARALLEL CU SIZE SELECTION 

 

A GPU is a parallel many-core programmable processor able 

to provide high computational performance in comparison 

with a CPU. Its tremendous computational capability can be 

used not only for accelerating computer graphics algorithms, 

but also for general purpose computing (GPGPU). Therefore, 

there has been a strong demand for using a GPU as a 

coprocessor to assist the CPU with data-intensive 

applications. A GPU is designed for problems that can be 

expressed as a parallel computation. Its programming is 

based on running short code sections, called kernels. Each of 

these kernels defines a task that can be executed multiple 

times and independently from other kernel calls. The 

overhead of initiating and loading a kernel onto the GPU is 

high. Therefore, using a GPU for executing high complexity 

calculations becomes efficient only when running an initiated 

kernel many times. A natural implementation of an HEVC 

encoder on a GPU or any other many-core processor, may 

create many kernel calls by allocating computational tasks for 

each CTU to a different kernel call. In order to be efficient, 

the GPU must run the kernel calls independently. As a result, 

this architecture makes it impossible to rely on information 

from other CTUs in the same frame, since computational 

tasks for all kernel calls should execute in parallel. However, 

as most fast CU size selection methods proposed in the 

literature assume serial computation, and therefore use 

information from spatial adjacent CTUs, they are not suitable 

for execution on a GPU. In this section, we propose a method 

for fast CU size selection that does not use information from 

other CUs in the same frame. This method has no spatial 

dependencies in the same frame thus suitable for highly 

parallel implementation on a many-core processor. 

Depth correlations between the current CTU and 

neighboring CTUs were collected in [10] and are summarized 

in Table 2. From this table we can see that, as we take 

information about quadtree depths from previously coded 

frames, the correlation between the evaluated CTU and 

neighboring CTUs decreases. This brings us to the 

assumption that predicting the optimal quadtree partitioning 

of a CTU based on the depths of neighboring CTUs from 

previous frames only is expected to hurt coding efficiency. In 

order to verify this assumption and to quantify the loss of 

coding efficiency, we have created a “temporally shifted” 

version of the method proposed in [10]. Namely, we use the 

method as in [10] with 𝑅 = 8. However, instead of using 

group 𝛼 and group 𝛽 with CTUs of the current frame 𝑁 and 

of the reference 𝑁 − 1 frame, we use CTUs of the reference 

𝑁 − 1 frame and of the 𝑁 − 2 frame respectively, at the same 

locations. Results of this naive “temporal shift” on the 

sequences given in Table 3, show on average an increase of 

about 2%  in bit-rate with a negligible degradation in PSNR, 

compared with [10]. These results show that, even with a 

simple change from serial methods, it is possible to gain 

significant acceleration of CU size selection for HEVC 

encoding by high parallelization with only a small penalty in 

coding efficiency. 

With these encouraging results in mind, we will now 

describe a fast CU size selection method that exploits better 

the correlations with CTUs in previous frames. The CTUs 

used by this method are depicted in Fig. 3. For designing the 

method, we use two observations. First, as seen in Table 2,  

Similarity Depths checked Group 𝛽 used? 

low 3 no 

medium-low 2 or 3 no 

medium-high 1 or 2 or 3 yes 

high 1 or 2 yes 

Group CTU 
Corr. for 

𝑅 = 8 

𝛼 

A 0.767 

B 0.772 

C 0.759 

I 0.789 

𝛽 

D 0.735 

E 0.725 

F 0.729 

G 0.725 

H 0.722 
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Fig. 3. Neighboring CTUs of the current CTU used in this 

paper for CU size selection. 

 𝜶 = {𝑬, 𝑭, 𝑰, 𝑰}, 𝜷 = {𝑮,𝑯, 𝑱, 𝑲, 𝑳,𝑴,𝑵} 

Table 1. Summary of the methods for fast CU size selection 

used in [10] and in this paper. The degree of similarity 

between the CTU under evaluation and neighboring CTUs in 

group 𝛼 determine the number of depths to be checked and 

whether to also use information from neighboring CTUs in 

group 𝛽. 

Table 2. Depth correlations between the current CTU and 

neighboring CTUs, taken from [10]. 



out of the neighboring CTUs in frame 𝑁 − 1, the 

collocated CTU 𝐼 has substantially higher correlation with the 

evaluated CTU. In order to exploit this higher correlation, we 

introduce a weighted version of group 𝛼. This group contains 

now three instead of four CTUs but CTU 𝐼 is included twice 

to give it a double weight in the similarity degree class 

decision.  CTUs 𝐸 and 𝐹 are also included in this group due 

to their high correlation with the evaluated CTU. A second 

observation is that, as we use CTUs from a frame that has 

already been coded, we can use neighboring CTUs not only 

to the left and to the top of the evaluated CTU but also to its 

right and to its bottom (CTUs 𝐺,𝐻, 𝐿,𝑀). This allows us to 

compensate for the decrease in CTU correlation by adding 

more CTUs that were not available in the serial algorithm and 

introduce a larger group 𝛽. The new group 𝛽 includes seven 

CTUs instead of five - the six neighboring CTUs in the 𝑁 −
1 frame not included in group 𝛼 (CTUs 𝐺,𝐻, 𝐽, 𝐾, 𝐿,𝑀), and 

the collocated CTU from the 𝑁 − 2 frame – CTU 𝑁. This 

CTU has a high correlation with the evaluated CTU, 

estimating according to Table 2  a loss of 0.038 in correlation 

with CTU 𝐼. The method we propose for  parallel CU size 

selection is similar to the one proposed in [10] with different 

CTUs in group 𝛼 and in group 𝛽. It is important to note that, 

although the description of the method we propose is similar 

to the description of [10] in Section 2 and in Table 1, due to 

the change in the group 𝛼 and in group 𝛽, the decisions of the 

new method may be different. In particular, since group 𝛼 in 

the proposed method includes CTU 𝐼 twice, more CTUs on 

average may be assigned with a high similarity compared 

with [10], thus fewer depths are checked. This leads to a faster 

running time. 

 

4. RESULTS 

 

In order to evaluate the performance of the proposed method, 

we implemented it in the HM16.2 reference software and we 

also implemented the method proposed in [10]. We tested 

with video sequences in class B (1920x1080), class C 

(832×480) and class D (416×240). We used "low delay P, 

main" encoding configuration with 𝑄𝑃 = 22, 27, 32, 37. The 

experimental results are given in Table 3, in which the change 

in coding performance, measured by BD-rate [17], and 

change in (serial) coding time are given. Table 3 compares 

[10] and the proposed method to the reference software 

(implementing [3]). The proposed method outperforms the 

state-of-the-art method proposed in [10] and achieves on 

average 1.65% bitrate increase compared with the reference 

software. Even for a serial implementation, running time is 

reduced by 56.99% on average compared with the reference 

software and is lower than the running time of [10]. A much 

larger reduction in running time can be achieved by a highly 

parallel implementation on a many-core processor, such as a 

GPU. Notice that more time savings are achieved for video 

sequences of higher resolutions. The reason is that there is a 

stronger spatial correlation between neighboring CUs in 

images of high resolution. Fig. 4 shows a comparison of rate-

distortion curves for the sequence BQTerrace (1920x1080) 

between the reference software and the proposed method. It 

can be seen that the rate-distortion difference is very small. 

 

5. CONCLUSION 

 

In this paper, we proposed a fast, highly parallel CU size 

selection method for HEVC that is suitable for 

implementation on a many-core processor, such as a GPU. 

Parallelism is achieved by removing dependencies and not 

using information from other CUs in the same frame. 

Nevertheless, the proposed method achieves only a negligible 

loss in rate-distortion performance and faster running times 

compared with counterpart serial methods that limit 

parallelism even when executed in a serial manner. 
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Class Sequence 

[10] proposed 

BDrate 

[%] 

ΔT 

[%] 

BDrate 

[%] 

ΔT 

[%] 

B BQTerrace 0.63 -41.70 3.31 -66.14 

C 

BasketballDrill 1.37 -38.19 0.80 -61.30 

BQMall 1.00 -38.31 1.95 -59.08 

PartyScene 0.16 -32.27 1.18 -56.41 

RaceHorses 0.50 -30.88 0.59 -55.36 

D 

BasketballPass 0.52 -34.74 2.45 -52.83 

BQSquare -0.10 -27.63 2.03 -54.30 

BlowingBubbles 0.36 -25.29 1.59 -54.54 

RaceHorses 0.41 -24.26 0.98 -52.76 

Average 0.54 -32.58 1.65 -56.99 

Table 3. Results of the proposed CU size selection method 

compared with [10]. For each method, change in coding 

performance in BD-rate, and change in (serial) coding time, 

are given compared to the HM16.2 reference software.  
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Fig. 4. Rate-distortion curves of the sequence BQTerrace. 
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