
 
 

Abstract 
 

In this paper, we propose a novel video foreground 
detection method that exploits the statistics of 3D space-
time patches. 3D space-time patches are characterized by 
means of the subspace they span. As the complexity of 
real-time systems prohibits performing this modeling 
directly on the raw pixel data, we propose a novel 
framework in which spatiotemporal data is sequentially 
reduced in two stages. The first stage reduces the data 
using a cascade of linear projections of 3D space-time 
patches onto a small set of 3D Walsh-Hadamard (WH) 
basis functions known for its energy compaction of natural 
images and videos. This stage is efficiently implemented 
using the Gray-Code filtering scheme [2] requiring only 2 
operations per projection. In the second stage, the data is 
further reduced by applying PCA directly to the WH 
coefficients exploiting the local statistics in an adaptive 
manner. Unlike common techniques, this spatiotemporal 
adaptive projection exploits window appearance as well 
as its dynamic characteristics. Tests show that the 
proposed method outperforms recent foreground detection 
methods and is suitable for real-time implementation on 
streaming video. 
 

1. Introduction 
Foreground detection is at the core of many video 

processing tasks such as tracking, video retrieval, or scene 
analysis. Efficient and accurate foreground detection relies 
on reliable background modeling, where common and 
expected background changes are statistically 
characterized.  A robust background model should be 
capable of dealing with changes of illumination 
conditions, shadows, weather conditions (rain, snow), 
effects of moving elements of the scene (e.g., swaying 
trees, spouting fountains), and objects introduced or 
removed from the scene. Thus, it should characterize 
persistent and common structures or motions in the scene 
and efficiently differentiate between these and newly 
introduced objects. 

A video sequence is a 3D signal with two spatial 

dimensions and one temporal dimension. In order to 
accurately characterize both the spatial and temporal 
structures, background modeling should describe joint 
space-time patches. The main difficulty with this approach 
is that processing overlapping space-time patches involves 
a huge amount of raw video data, making it impractical to 
perform in real-time systems. Thus, background modeling 
methods typically use some form of marginalization or 
reduction techniques.  

Many background modeling techniques are performed 
on a pixel-by-pixel basis. The simplest such technique 
maintains a single background image that is computed 
using, for example, running average or median of the 
intensity of each pixel across time. Foreground objects can 
then be detected by subtracting the current frame from the 
background image. These methods perform well only in 
easy scenarios. A very popular approach for background 
modeling is to model each pixel as a mixture of Gaussians 
(MoG) [23]. When the assumptions imposed by 
parametric methods, such as MoG, fail, nonparametric 
approaches are more suitable. Some examples are the use 
of kernel density estimation (KDE) [7] or quantization of 
background values at each pixel into codewords [12]. 
Nonparametric based methods provide a flexible 
framework to represent multimodal densities. However, 
their high memory requirements and computational 
complexity inhibit the use of these methods in real-time 
applications. Predictive methods have also been used as  
dynamic models to predict the pixel intensity from 
previous observations [24]. 

As pixel-by-pixel background modeling techniques lack 
the ability to capture correlations among neighboring 
pixels, several authors have proposed techniques that 
account for spatial correlations. Spatial correlations 
together with some temporal consistency have been 
modeled using Hidden Markov Models (HMMs) [27], 
Markov Random Field (MRF) [21] and autoregressive 
models [15]. An interesting background modeling 
approach, first suggested in [17], uses Principal 
Component Analysis (PCA) to compute a small number of 
'eigenbackgrounds' that capture the dominant variability of 
the background. Detection is performed by projecting 
input images onto the eigenbackgrounds and thresholding 
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the obtained distances. Since the basis vectors model only 
the background, image regions containing foreground 
objects are expected to be distant from their projections 
onto the background subspace. PCA is also used in [20] to 
compute a small number of eigenbackgrounds. However, 
in this method PCA is separately applied to each image 
block and then spatial correlations among blocks are 
exploited using co-occurrence of image variations. For 
more information on background modeling techniques, the 
reader is referred to [3, 5, 8, 19]. 

Background modeling using these methods gives 
satisfactory results on easy scenarios. However, it has 
been shown [4, 18] that these methods fail in the general 
case of scenes with dynamic backgrounds. For such 
scenes, more elaborate modeling of temporal frequencies 
is required. 

In this paper, we propose a novel video background 
modeling technique that directly models the statistics of 
3D space-time video patches, thus capturing both the 
appearance and dynamical characteristics of the scene. 
The suggested approach assumes that each background 
space-time patch lies within a low dimensional subspace 
(such as in [13]). Since real-time systems prohibit 
applying this reduction directly on the raw pixel data, we 
propose a new approach where reduction is performed 
successively in two stages. The first stage applies initial 
reduction by projecting each space-time patch onto a fixed 
set of basis vectors known to be efficient for natural video 
scenes. The second stage applies further reduction, this 
time adaptive, where each patch is projected into its local 
subspace using PCA. Since the second reduction is 
performed on the coefficients generated in the first stage, 
the complexity of the adaptive PCA is manageable and 
possible to apply in real-time. The suggested two-stage 
approach allows maintaining a compact background model 
using space-time patches. We show that this technique is 
efficient both in its run-time performance and in its 
discrimination power. 

The remainder of this paper is organized as follows. 
Fast projection of space-time patches using the Gray-Code 
filtering scheme is described in Section 2. The proposed 
background modeling technique is presented in Section 3, 
and its results are given in Section 4. Finally, conclusions 
are drawn in Section 5. 

2. 3D Projections using Gray Code Kernels  
A common approach to obtain compact signatures for 

spatiotemporal video patches is to design a set of specific 
kernels which are efficient to apply. Studies that took this 
course of action include the integral image [26], which 
was later extended to integral video [11], summed-area 
tables [6], and a generalized version of these called boxlets 
[22]. These approaches have two main drawbacks. First, 
they allow only a limited set of kernels to be computed 

efficiently. Second, they do not form an orthogonal set of 
kernels, thus their extracted features may include 
redundant information. In this section, we propose a novel 
scheme for extracting a compact set of features for each 
spatiotemporal patch. The proposed scheme does not 
suffer from the above drawbacks. 

  An efficient pattern matching framework was recently 
presented in [9]. Using this framework, patterns and image 
windows are represented using a small set of coefficients 
that are calculated by projecting the pattern/windows onto 
a small set of Walsh-Hadamard (WH) basis vectors. For 
natural images, these basis vectors, ordered in increasing 
sequency (number of sign changes in the vector - 
analogous to frequency), capture a large portion of the 
window energy with very few projection coefficients on 
average. Furthermore, it is shown in [2] that the Walsh-
Hadamard basis vectors are a specific case of a broader 
family of kernels – the Gray-Code Kernels (GCK). The 
GCK kernels are highly efficient for projection using only 
2 operations per pixel per kernel independent of window 
size. We briefly review this technique. For further details, 
the reader is referred to [2]. 

Consider first the 1D case where signal and basis 
kernels are one-dimensional1. Each WH kernel in 1D can 
be generated by a sequence of Kronecker products of the 
strings (++) and (+−). For example: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

+ + ⊗ + + = + + + +

+ − ⊗ + + = + + − −

+ − ⊗ + + ⊗ + + = + + + + − − − −

 

Thus, the set of possible basis kernels is isomorphic to a 
binary string, say (+ +) = 1 and (+ −) = −1, according 
to their generating sequence. Each binary string in reverse 
order is called the α-index of the kernel. Thus, the α-index 
of the examples above is [1  1], [1 − 1] and [1  1 − 1] 
respectively. Two basis kernels of similar length are 
defined to be α-related if the hamming distance between 
their α-index (the number of positions for which their       
α-indices differ) is one. Without loss of generality, let the 
α-indices of two α-related kernels be 
(𝛼1 …𝛼𝑟−1, +1, …𝛼𝑘) and (𝛼1 …𝛼𝑟−1,−1, …𝛼𝑘). We 
denote the corresponding kernels as 𝑣+ and 𝑣− 
respectively. It is shown in [2] that two α-related kernels 
always share the same prefix of length 2𝑟−1 = 𝛥. Two    
α-related kernels also share a special relationship. Let 𝑏+ 
and 𝑏− be the two 1D signals resulting from convolving a 
signal 𝑥 with two α-related filter kernels 𝑣+, 𝑣−, 
respectively, then it can be shown [2]: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

b i b i b i b i

b i b i b i b i
+ + − −

− − + +

= + − ∆ + + − ∆

= − − ∆ + − − ∆
 (1) 

 
1 We call the basis vector kernels as they are applied to the entire 

space-time space as convolution kernels. 



 
 

This forms the basis of an efficient scheme for convolving 
a signal with a set of GCK. Given the result 𝑏+ (𝑏−) of 
convolving the signal with the filter kernel 𝑣+ (𝑣−), the 
result 𝑏− (𝑏+) of convolving with the filter kernel  𝑣− (𝑣+) 
requires only two operations per pixel independent of the 
kernel size (Figure 1). A sequence of WH kernels ordered 
in dyadic (or Paley) order of increasing sequency is shown 
to be consecutively α-related. Thus, sequentially 
convolving an image with kernels in the sequence requires 
only 2 operations per pixel per kernel regardless of signal 
and kernel size. For separable kernels, such as the WH 
kernels, the previous definitions and results can be 
generalized to higher dimensions. The computation cost 
remains at two operations per pixel per kernel regardless 
of the kernel size or dimension. 

Based on the separability of the WH kernels, we 
propose to extend the fast GCK projection scheme into 3D 
spatiotemporal patches, as depicted in Figure 2. As in the 
2D case, the 3D GCK coefficients are both informative 
and fast to compute. Figure 3 shows that for natural video 
sequences, the 3D WH projection vectors, ordered in 
increasing sequency, capture a large portion of the 
window energy with very few projection coefficients on 
average. The plot displays the percentage of energy 
accumulated by the projection coefficients. It can be seen 
that the first 10 (of 512) projections capture over 90 

percent of the energy. For comparison, the percentage of 
accumulated energy is shown for the standard basis (delta 
functions), i.e. patch energy accumulated by summing 
squared pixels. In this case, more than 460 projections 
were required to capture 90 percent of the energy. 

The extension of the efficient GCK projection 
framework into 3D is straightforward. However, the fact 
that the additional dimension is time and the fact that the 
signal is acquired incrementally (frame by frame) raises 
nontrivial implementation considerations. Remember that, 
according to Eq. (1), the efficient GCK projection scheme 
requires maintaining projections of Δ previous samples. In 
2D this implies accessing image projections calculated to 
the left or above current image location. This is not a 
problem since the image and its previous projections are 
available in memory. In 3D, using Δ previous samples 
requires going back in time and maintaining all projection 
values for the last Δ frames. Frame buffering complicates 
the ordering of the projection kernels since Δ depends on 
the temporal length of the space-time patches as well as on 
the temporal sequency of projection kernels. Projecting 
onto a kernel with high temporal sequency may incur high 
storage complexity (requiring a larger number of previous 
projections to be maintained in memory). 

To allow efficient buffering and low memory cost, we 
revise the notion of a linear sequence of α-related kernels 
and consider a connected graph of α-related kernels. In the 
suggested approach, we first compute the projections onto 
kernels with spatial sequency 0 (i.e. kernels that are 
spatial-DC kernels) across all required temporal 
sequencies (the kernels marked in red in Figure 2). From 
each of these kernels a linear sequence of α-related kernels 
can be formed, which follows a 'snake' order (see [16]) 
within the set of kernels of the same temporal sequency 
but having different spatial sequency. This scheme allows 
a significant reduction in memory usage as the only 
projections required to be stored in memory for the 
preceding video frames are those associated with the 

Figure 1. Given 𝒃− (convolution of a signal with filter kernel 
𝒗−), the convolution result 𝒃+ can be computed using 2 
operations per pixel regardless of kernel size [2]. 

Figure 2. The set of 3D Walsh-Hadamard kernels in increasing 
sequency order. The projection onto kernels marked in red are 
stored in memory and are used for future projections. 
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Figure 3. The percentage of space-time patch energy 
accumulated by projection coefficients for both the standard 
basis, i.e. delta functions, and for the 3D Walsh-Hadamard 
projections. The values displayed are averaged over 1000 8×8×8 
pattern-window pairs chosen. 



 
 

spatial DC kernels alone. Thus, the projection scheme 
performs as follows (Figure 4). Given the nth video frame: 
1. Calculate the spatiotemporal DC projection for the 

patches of the frame using the spatiotemporal DC 
projections of the previous frame. This can be 
performed with 6 operations per pixel using a 
separable box filter.  

2. Calculate all spatial-DC projections (for all required 
temporal frequencies) using the fast projection 
approach [2]. This requires access to the 
spatiotemporal DC projections and spatial-DC 
projections computed for previous frames.  

3. Free memory associated with frame number (𝑛 − Δ). 
4. Calculate all remaining projections using a spatial 

'snake' order (see [16]). This can be done based on the 
spatial-DC projections of frame n alone, 

5. Store in memory only the spatial-DC projections of 
frame n. 

Denote 𝑝𝑠 and 𝑝𝑡  the number of spatial and temporal 
sequencies of the kernels to be used. Also denote Δ𝑚𝑎𝑥 the 
maxium Δ over all required temporal kernels. The 
suggested approach reduces memory requirement from 
Δ𝑚𝑎𝑥𝑝𝑡𝑝𝑠 frame projection values to Δ𝑚𝑎𝑥(𝑝𝑡 − 1) + 1 
frame projection values. For example, for patches of size           
8 × 8 × 8  and with 𝑝𝑠 = 4, 𝑝𝑡 = 4, the number of stored 
frame projections reduces from 64 to 13. The GCK 
scheme with the suggested projection order was tested on 
real video sequences and patterns. The results show that 
the suggested projection method is highly efficient and 
achieves better-than-real-time performance. Table 1 
summarizes running times and memory requirements for 
different projection configurations. 

3. Two-Stage Background Modeling 
In this paper we propose a background modeling 

scheme that assumes each space-time background patch 
can be well modeled by a low dimensional linear 
subspace. Foreground patches are determined by their 
distance to the modeled subspace. However, since 

subspace modeling is performed on each space-time patch, 
performing subspace modeling on the raw data, as in [17, 
20], is not feasible. Thus, we propose to apply subspace 
modeling (and classification) in two successive stages: 

 
Global dimensionality reduction 
 

The first stage reduces dimensionality of the data in a 
fast and efficient manner that is independent of the input 
content. This is performed by projecting space-time video 
patches onto a small set of 3D Walsh-Hadamard (WH) 
basis vectors that form a low-dimensional subspace. We 
utilize the Gray-Code filtering scheme [2] described in 
Section 2, which enables efficient projection using only 2 
operations per window per projection, regardless of the 
window size. As shown earlier, for natural sequences, a 
few of these coefficients suffice to capture well the 
structure of the space-time patch. 

Projecting each space-time patch using 3D GCK forms 
a low dimensional space that contains 𝑚 WH coefficients. 
The kernels used and their order of sequencing is 
described in Section 2. Example of projection onto these 
kernels is shown in Figure 5. Figure 5(a) depicts a frame 
of a video sequence from the PETS 2001 dataset [1] which 
contains four foreground objects – a car, two pedestrians 
and a cyclist. Figure 5(b) depicts the coefficients obtained 
for the space-time patches associated with the pixels of 
this frame, for 9 different low sequency 3D WH 

Figure 4. Proposed projection scheme for space-time patches with 𝒑𝒔 = 𝟑,𝒑𝒕 = 𝟑. To simplify illustration, the spatial domain is shown 
as 1D (y-axis). At time 𝒕𝒏, projections are first performed onto spatial DC kernels across all required temporal sequencies (bottom row of 
kernels in array of 𝒕𝒏). From each of these kernels, a sequence of projections is calculated having the same temporal sequency but having 
different spatial sequency (shown as red arrows in array of 𝒕𝒏). These calculations require previously stored projections (shown as arc-
arrows from the previous time frames). Only 9 (instead of 36) past frame projections are required to be maintained in memory. 
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patch size 
(h×w×t) 

# of kernels 
(𝑝𝑠×𝑝𝑡 = 𝑚) 

run time 
(fps) 

memory 
(frame proj.) 

4×4×8 4×4=16 37 13 
4×4×16 4×4=16 37 25 
8×8×8 4×4=16 37 13 
4×4×8 2×2=4 97 5 
4×4×8 4×2=8 61 5 

 Table 1. Running times and memory requirements for 
projections of spatiotemporal video patches at D1 (704x576) 
resolution using one core of an Intel Core 2 Due @ 1.8Ghz. 
  



 
 

projections. In the coefficient images, dark colors 
represent large coefficient values. It can be observed that 
patches associated with foreground objects have high 
coefficient values while static objects and background 
moving objects, e.g., waving trees, have low values. The 
figure demonstrates that by exploiting the global statistics 
of spatiotemporal data the set of low sequency 
spatiotemporal WH coefficients captures both spatial 
(appearance) and temporal (dynamic) frequencies in the 
scene. 

 
Adaptive dimensionality reduction 
 

The second stage of the process further reduces 
dimensionality by exploiting the local statistical 
characteristics of the space-time patches of the data which 
have been preserved in the first stage. The second stage 
builds a spatially adaptive lower dimensional subspace 
representing background patches. This is performed using 
Principal Component Analysis (PCA) [10] on the WH 

coefficients calculated in the first stage. 
Given 𝑛 video frames composing the training data, we 

consider the 𝑛 spatio-temporal patches of these frames 
associated with the same spatial location within all the 
training frames. We denote this set as a block. Every patch 
of the block is represented by 𝑚 WH coefficients obtained 
in stage 1, thus 𝑛 𝑚-dimensional vectors are associated 
with each block. These are used to calculate the 
eigenspace that models the background at the block's 
spatial location. For each block, the mean of the WH 
vectors 𝜇 = 𝐸{𝑋𝑖}𝑖=1..𝑛 is subtracted from the vectors to 
form a set of zero mean vectors �𝑋�𝑖�𝑖=1..𝑛

. The 𝑚 × 𝑚 
covariance matrix 𝐶 is then computed as: 

 { }
1..

ˆ ˆ T

i i i n
C E X X

=
=  (2) 

This covariance matrix can be diagonalized via eigenvalue 
decomposition: 

 TD C= Φ Φ  (3) 
where Φ is the eigenvector matrix of 𝐶 and 𝐷 is the 
corresponding diagonal matrix. In order to reduce 
dimensionality of the space, PCA is used to collect the top 
𝑞 eigenvectors (associated with the 𝑞 largest eigenvalues) 
to form the matrix Φ𝑞 . These 𝑞 eigenvectors span the 
subspace representing the background block. 

During classification into foreground and background, 
the 2-stage process is repeated. Given a new frame, the 𝑚 
WH coefficients are calculated for each space-time patch 
associated with pixels of the new frame, producing the 
vector 𝑌𝑖. Following, the vector 𝑌𝑖 is projected onto the 
subspace defined by Φ𝑞  by first subtracting the subspace 
mean 𝜇 obtaining: 

 
î iY Y µ= −  (4) 

followed by a projection onto the subspace vector. The 
distance 𝑑 between 𝑌�𝑖 and the projected vector is 
computed: 

 ˆ ˆT

i i q q id Y Y= − Φ Φ  (5) 
To determine classification into foreground and 
background, a threshold operation is performed on 𝑑, 
assuming large values for foreground objects since they 
should not be modeled well by the eigenspace. 

Note that the background model is constantly updated 

(a) 

(b) 
Figure 5.  (a) A frame of a video sequence from the PETS 2001 
dataset and (b) a set of its low sequency 3D Walsh-Hadamard 
projections obtained by projecting patches of size 4×4×8 
(height×width×frames). Temporal frequencies of the projections 
increase left to right. Spatial frequencies of the projections 
increase top to bottom. Dark colors represent high coefficient 
values. Foreground objects of the scene have high values while 
static objects and background moving objects have low values. 

(a) (b) 
Figure 6. Foreground object detection results, for the frame from 
Figure 5(a) using (a) MoG and (b) the proposed technique. 



 
 

along time to account for possible changes in the 
background model. The current estimate of 
eigenbackgrounds is updated through Incremental PCA 
[28] that updates with the current frame while the effect of 
the previous observations is exponentially reduced. 

It is interesting to analyze the influence of parameters 
on algorithm performance. As discussed in Section 3, 
patch size (ℎ × 𝑤 × 𝑡) does not affect running time. Large 
space-time patches can better capture (spatial or temporal) 
frequencies while small space-time patches can better 
localize these frequencies. A large number, 𝑚 of WH 
coefficients can capture more space-time frequencies but 
incurs high time complexity. Large number of 𝑞 dominant 
eigenvectors can better represent patches but also incurs 
higher time complexity. Typical values of the 
aforementioned parameters will be discussed in the results 
section. 

Finally, we consider the run time of the process. During 
training, applying PCA directly on the pixels of the 
sequence, requires 𝒪((ℎ𝑤𝑡)2𝑛) operations for each 3D 
patch. Using the suggested scheme only 𝒪(𝑚2𝑛) 
operations are needed for each patch since the 𝑚 
coefficients are calculated with only 2 operations per patch 
per coefficient. Typical values for ℎ𝑤𝑡 are in the range 
[64 4096] while typical values for 𝑚 are in the range 
[4 16] thus, reducing the complexity of the proposed 
scheme by  a few orders of magnitude compared to a naive 
scheme. Time complexity of the classification stage is 
dependent on the 𝑚 WH projections, the projection onto 
the subspace defined by the 𝑞 PCA coefficients and on 
thresholding. We have measured the running time of the 
proposed algorithm implemented in C and using the 

configurations from Table 1. It can be seen, in Table 2, 
that the classification stage is fast and outperforms real-
time performance. 

4. Results 
The proposed method was tested on a variety of video 

sequences and compared with other state-of-the-art 
background modeling methods. In all tests, the proposed 
method was performed with space-time patches of size 
8×8×8 and with 𝑚 = 16 low sequency 3D WH 
projections that were further projected using Incremental 
PCA with 𝑞 = 4 eigenvalues. Note that is this paper we 
concentrate on the luminance component. A chrominance 
component can be added independently to improve results. 

Figure 6 depicts a comparison of background modeling 
of the frame from Figure 5(a) using the proposed method 
compared with the Mixture of Gaussians method (MoG) 
[23]. Typical to many background modeling techniques, 
the cloudy sky at the top of the scene is detected as 
foreground by the MoG. This is due to the inability of this 
approach to model correctly the temporal frequencies in 
this region that is coarsely quantized by the video codec. 
The proposed approach models well the dynamics of this 
background.  

A significant advantage of the proposed background 
modeling method is its robustness to dynamic 
backgrounds.  In order to further demonstrate the strengths 
of the proposed method, tests were performed with video 
sequences taken from [14].  These video sequences are 
difficult-to-model since they contain dynamic 
backgrounds (e.g., sea waves, a spouting fountain, and 
wavering trees). Figure 7 compares background modeling 
results for two frames from the Watersurface sequence and 
from the Airport sequence. The Watersurface sequence 
background contains highly dynamic sea waves. The 
Airport sequence contains a busy airport scene with many 
people crossing the camera. Both video sequences form a 
challenge to background modeling methods. Results are 
compared with the MoG [23], codebook model [12] and 
block-based eigenbackgrounds [17] methods. The MoG 
and eigenbackgrounds methods result in many false 
alarms. Results of the proposed method are substantially 
improved. Opposed to the other three methods, the 

 MoG codebook eigenbackgrounds proposed 
 prec. recall F prec. recall  F prec. recall F prec. recall F 
Airport 0.71 0.32 0.44 0.41 0.67 0.51 0.65 0.51 0.57 0.67 0.71 0.69 
Campus 0.73 0.09 0.11 0.67 0.32 0.43 0.41 0.41 0.30 0.52 0.57 0.54 
Fountain 0.83 0.70 0.75 0.64 0.65 0.64 0.63 0.69 0.64 0.72 0.81 0.76 
Lobby 0.85 0.35 0.41 0.68 0.36 0.47 0.72 0.23 0.21 0.61 0.56 0.47 
Watersurface 0.91 0.46 0.57 0.82 0.61 0.70 0.74 0.68 0.71 0.82 0.77 0.79 

 Table 3. Quantitative evaluation results for 5 of the video sequences from [14] . The proposed method outperforms 
MoG [23], codebook model [12] and block-based eigenbackgrounds [17]. 

# of kernels 
(𝑝𝑠×𝑝𝑡 = 𝑚) 

# of 𝑞 largest 
eigenvalues 

run time 
(fps) 

2×2=4 2 39 
4×2=8 2 26 
4×2=8 4 19 
4×4=16 2 26 
4×4=16 4 18 
4×4=16 8 17 

 Table 2. Running times for foreground detection using the 
proposed method at D1 (704x576) resolution using one core of 
an Intel Core 2 Due @ 1.8Ghz. 
 



 
 

codebook model method has the advantage that it uses 
color information. Still, in these two video sequences, the 
proposed technique shows improved results compared to 
the codebook model technique. 

For a quantitative evaluation, the performance of the 
proposed method was evaluated on 200 randomly selected 
frames from the video sequences of [14]. Like in [14], 
results were evaluated by comparing with the 
corresponding 20 ground truth frames for each sequence. 
Results are given in terms of precision (the fraction of 

detected pixels that are foreground pixels), recall (the 
fraction of foreground pixels that are detected) and F-
measure [25] which combines precision and recall using 
even weighting: 

 2
precision recall

F
precision recall

⋅
=

+
 (6) 

 Results of several background modeling methods – 
MoG [23], codebook model [12], block-based 
eigenbackgrounds [17] and the proposed method, are 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 7:  Foreground object detection for (a) two frames from the Watersurface video sequence (left) and from the Airport video 
sequence ( right) together with their (b) ground-truth results. Object detection was performed using (c) MoG [23], (d) codebook model 
[12], (e) block-based eigenbackgrounds [17], and (f) the proposed method. The proposed method shows improved results compared to 
other techniques. 



 
 

compared in Table 3. It can be observed that for these 
videos, background modeling using the proposed method 
outperforms the compared methods. In our tests, 
comparison with all other video sequences of [14] show 
similar results. 

5. Conclusion 
In this paper we propose a novel method for detecting 

foreground objects from complex environments. Unlike 
common foreground detection methods, the proposed 
method models the statistics of space-time background 
patches to exploit window appearance as well as its 
dynamic characteristics. Real-time performance is 
achieved in two stages of dimensionality reduction. The 
first stage reduces the data using fast and efficient 
projections of space-time video patches onto a small set of 
3D Walsh-Hadamard (WH) basis vectors that utilize the 
Gray-Code filtering scheme. The second stage builds 
spatially adaptive lower dimensional subspace 
representing background patches by applying PCA to the 
WH coefficients. The suggested two-stage approach 
allows maintaining a compact background model that 
characterizes spatiotemporal structures. Tests show that 
the proposed method is fast and efficient and outperforms 
common background modeling methods in various 
scenarios.  
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