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Video Block Motion Estimation
Based on Gray-Code Kernels
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Abstract—Motion in modern video coders is estimated using a
block matching algorithm that calculates the distance and direc-
tion of motion on a block-by-block basis. In this paper, a novel fast
block-based motion estimation algorithm is proposed. This algo-
rithm uses an efficient projection framework that bounds the dis-
tance between a template block and candidate blocks. Fast pro-
jection is performed using a family of highly efficient filter ker-
nels—the gray-code kernels—requiring only 2 operations per pixel
per kernel. The projection framework is combined with a rejection
scheme which allows rapid rejection of candidate blocks that are
distant from the template block. The tradeoff between computa-
tional complexity and quality of results can be easily controlled in
the proposed algorithm; thus, it enables adaptivity to image con-
tent to further improve the results. Experiments show that the pro-
posed adaptive algorithm outperforms other popular fast motion
estimation algorithms.

Index Terms—Block matching, gray-code Kkernels (GCK),
motion estimation, video coding, Walsh-Hadamard transform
(WHT).

I. INTRODUCTION

removing redundancies. The most important redun-
dancy—temporal redundancy—is typically reduced by motion
estimation and motion compensation which encodes the dif-
ferences between intensity values in the current frame and
those of their counterparts in the reference frame that has been
translated by an estimated motion vector. In most video coding
standards, motion estimation is block based. A video frame is
divided into nonoverlapping macroblocks, typically of size 16
x 16 pixels. Each macroblock is compared to candidate blocks
within a search area in the reference frame. This process is
referred to as the block matching algorithm (BMA). Various
distortion measures could be used for finding the best match for
a macroblock in the motion estimation process. Mean squared
error (MSE), mean absolute error (MAE), and sum of absolute
differences (SAD) are commonly used. Recently, a new dis-
tortion measure for motion estimation has been proposed—the
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sum of absolute transformed differences (SATD) [1]. This
measure sums the frequency transform coefficients, typically
the Hadamard transform, of the differences between the pixels
in the template macroblock and the corresponding pixels in a
candidate block. SATD is considerably slower than the SAD
but it more accurately predicts quality from the viewpoints of
both objective and subjective metrics. Therefore, it is used in
the H.264 reference model software [2], as well as in other new
video encoders.

Motion estimation, although efficient in reducing temporal
redundancy, incurs high computational complexity. A full
search technique for finding the best matching region within
the search area in the reference frame is usually impractical
for real-time applications due to the large number of compar-
isons required. Thus, many alternative “fast search” motion
estimation algorithms have been proposed in the literature.
The main concepts of these fast algorithms can be classified
into six categories: reduction in search positions, predictive
search, simplification of matching criterion, bitwidth reduction,
hierarchical search, and fast full search [3]. The most popular
category is the reduction in search positions. Algorithms in this
category reduce search complexity by limiting the number of
candidate blocks. These algorithms rely on the assumption that
the matching error monotonically increases with the distance
from the optimal position (having minimum distortion). This
assumption is not always valid and the process may converge
to a local minimum on the error surface rather than to the
global minimum as in the full search algorithm. Well-known
algorithms in this category are the 2-D logarithmic search [4],
three-step search [5], four-step search [6], cross search [7],
diamond search [8], and center-biased diamond search [9].
Diamond search based algorithms have significantly better
performance in speed and quality than prior algorithms [3].
However, due to its simplicity, three-step search is still com-
monly used.

Predictive motion estimation, for example [10] and [11],
utilizes the motion information in the spatial and/or temporal
neighboring macroblocks to form an initial estimate of the
current motion vector; thus, it can effectively reduce the search
area as well as the computation. Another approach for fast
motion estimation is to speed up the calculation of matching
error for each candidate block independently. This is usu-
ally achieved by subsampling the pixels in the template and
candidate blocks [12], [13]. Finding the optimal match with
minimum matching error using this technique is, however, not
guaranteed. This approach may be combined with the former
two techniques to limit the number of search positions and to
predict the current motion vector.
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A hierarchical search uses a multiresolution pyramid struc-
ture. Conventional block matching (either full search or any
other fast search method), is first applied to the highest level
of the pyramid. The detected motion vector is further refined
iteratively in the lower levels [14]. Similar to the previously de-
scribed approach, this technique may also converge to a local
minimum. In spite of this fact, it has been regarded as one of the
most efficient methods for motion estimation with very large
frames and search areas.

A different approach for fast motion estimation uses simple
matching criteria to reject search positions while ensuring the
global minimal matching error can still be attained. Only candi-
date blocks that have not been disqualified are further processed
using more precise distortion calculations. Using an appropriate
test, many search positions may be excluded from being further
considered in the motion vector search, thus reducing search
complexity significantly. Some well-known examples of this ap-
proach are the successive elimination algorithm [15], [16] and
the block sum pyramid [17]. An improvement of the block sum
pyramid based on a winner-update strategy is presented in [18].

Orthogonal transforms have also been shown to be useful for
block motion estimation. However, only very few algorithms
using the Walsh-Hadamard transform (WHT) for block motion
estimation have been proposed in the literature. In [19] a hier-
archical motion estimation algorithm is proposed in which the
SAD of the WHT coefficients is used as a distortion measure of
four search levels. In [20] a fast full search algorithm using the
MSE is proposed. The MSE is calculated using the WHT coef-
ficients with the low frequency coefficients considered first. An
early termination criterion based on the successive elimination
algorithm [15] is used for early exclusion of inappropriate can-
didates. Efficient calculation of the transform coefficients is per-
formed based on the overlapping nature of search regions. This
approach is not generalized and suffers from scalar constants
that degrade the overall algorithm performance significantly.
Recently, two fast motion estimation algorithms using the WHT
have been proposed [21], [22]. Both algorithms considerably
benefit from the addition of a standard predictive motion esti-
mation scheme; however, these studies use the projection frame-
work described in [23] and [24] (which was later shown to be
less efficient than the fast projection technique described in [25]
and [26]).

In this paper, a novel fast block-based motion estimation algo-
rithm is described. This algorithm uses the WHT coefficients as
a special case of an efficient projection framework that bounds
the distance between macroblocks and their corresponding can-
didate blocks. A family of highly efficient filter kernels—the
gray-code kernels (GCK)—is used for projection using only 2
operations per pixel per kernel. The projection framework is
combined with a rejection scheme which allows rapid rejec-
tion of candidate blocks that are distant from the template mac-
roblock. The algorithm enables adaptivity to image content in
order to tune the tradeoff between computational complexity
and quality of results and to further improve the results. An ini-
tial prototype of the proposed algorithm was first described in
[27].

This paper is organized as follows: Fast pattern matching
algorithms using WH projection kernels and GCK are first
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Fig. 1. Projection of p — w onto vector » produces a lower bound on distance
ldll = llp — wl|.

described in Section II and Section III, respectively. The pro-
posed fast block motion estimation algorithm, based on these
fast pattern matching algorithms, is presented in Section IV.
Complexity analysis and results are given in Section V and
Section VI, respectively. The proposed algorithm is further
refined for adaptivity in Section VII. Finally, conclusions are
drawn in Section VIIL

II. FAST PATTERN MATCHING USING WALSH-HADAMARD
PROJECTION KERNELS

The block motion estimation approach suggested in this paper
is based on a novel pattern matching technique, introduced in
[23], [24] and briefly reviewed here. The suggested approach
uses an efficient WH projection scheme which bounds the dis-
tance between a pattern and an image window using very few
operations on average. The projection framework is combined
with a rejection scheme which allows rapid rejection of image
windows that are distant from the pattern.

The pattern matching problem involves finding a particular
pattern in an image where the pattern is usually much smaller
than the image. This can be performed naively by scanning the
entire image and evaluating the similarity between the pattern
and a local 2-D window about each pixel. Assume a 2-D k X k
pattern p is to be matched within an image I of size n X n. For
each pixel location (z,y) in the image, the Euclidean distance
may be calculated

k—1
du(p. Ley) = Y (z+iy+4) —pli,j))°
{2,j}=0

ey

where I, ,, denotes a local window of I at coordinates (z,y). In
the context of motion estimation, this procedure is equivalent to
full search block matching of a k x k template block to a set of
candidate blocks in a search area of size n x n with the MSE
criterion. Referring to the pattern p and window w as vectors in
RK  d = p — w is the difference vector between p and w. The
Euclidean distance can then be rewritten in vectorial form
dp(p,w) = ||d|| = Vd"d. )
Now assume, as illustrated in Fig. 1, that p and w are not given
but only the values of their projection onto a vector v. Let

z=vld=vTp—2Tw 3)
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be the projected distance value. Since the Euclidean distance is
a norm, it follows from the Cauchy—Schwartz inequality that a
lower bound on the actual Euclidean distance can be inferred
from the projection values. Using Cauchy—Schwartz inequality
for norms, it follows that:

[olllld]] > [l d]l. )
This implies
[o"(p —w)|| _ [lo"p = o w]|
de(p,w)=|p —w||=|d]| > =
(p,w)=lp = wl|=d| ol o
©)
and
d%(p,w) > 2% /||v|. (6)

If a collection of projection vectors are given vy . . . v, along
with the corresponding projected distance values z; = v}'d, the
lower bound on the distance can then be tightened

dg(p,w) 2 Z"(VTV)™'Z = LB}, (p, w) )

where V. = [v1...v] and Z = (z1...2m)7 so that Z =
V7Td. As the number of projection vectors increases, the lower
bound on the distance dg(p, w) becomes tighter. In the extreme
case when the rank of V equals k2, the lower bound reaches
the Euclidean distance. An iterative scheme for calculating the
lower bound is also possible. Given an additional projection
vector v,,,4+1 and projection value z,,+1, the previously com-
puted lower bound can be updated without recalculating the in-
verse of the entire system (VT'V)~1 (see [24] for details). If the
m projection vectors are orthonormal, the distance lower bound
after m projections is reduced to

LB (p,w)=ZT(VIV)ytz =777 )

Returning to pattern matching, a window can be determined
as being dissimilar to the pattern if the lower bound is above
a certain threshold. Windows can be rejected as nonpatterns
without actually computing the true distance. In the context
of this problem, since lower bounds are only compared to
each other, the actual value of the lower bound is irrelevant.
Thus, even if the projection vectors are orthogonal and not
orthonormal, the normalizing factor in the lower bound cal-
culation can be discarded. In order for this approach to be
efficient, vectors should be chosen according to the following
two necessary requirements.

» The projection vectors should be highly probable of being

parallel to the vector d = p — w.

* Projections of image windows onto the projection vectors

should be fast to compute.

The first requirement implies that, on average, the first few
projection vectors produce a tight lower bound on the pattern-
window distance. This, in turn, will allow rapid rejection of
image windows that are distant from the pattern. The second
requirement arises from the fact that the projection calculations
are performed many times for each window of the image. Thus,
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Fig. 2. Projection vectors of the WHT of order k = 8. Projection vectors are
ordered with increasing spatial sequency. White represents the value 41 and
black represents the value —1.

the complexity of calculating the projection plays an important
role when choosing the appropriate projection vectors.

A set of projection vectors shown in [23] and [24] to satisfy
the above two requirements are the WH basis vectors. For nat-
ural images, these vectors, ordered in increasing sequency (the
number of sign changes along rows and columns of the basis
vector), capture a large portion of the pattern-window distance
with few projections on average. In addition, an efficient method
for calculating the projection values for these vectors is pre-
sented in the next section. The WHT has long been used for
image representation under numerous applications [28]. The el-
ements of the WH (nonnormalized) basis vectors are orthogonal
and contain only binary values (£1). Thus, computation of the
transform requires only integer additions and subtractions. The
WHT of an image window of size k x k (with k a power of 2) is
obtained by projecting the window onto k? WH basis vectors.
In the case of pattern matching within an image, it is required to
project each k£ x k window of an n x n image onto the vectors.
This results in a highly overcomplete image representation. The
projection vectors associated with the 2-D WHT of order & = 8
are displayed in order of increasing sequency in Fig. 2. Each
basis vector is of size 8 x 8. White represents the value +1 and
black represents the value —1.

Finally, we note that the projection approach described above
was introduced for the Euclidean distance; however, it is ap-
plicable to any distance measure that forms a norm. The cor-
rectness of the iterative scheme for norm-2 is proven in [23],
[24]. However, in this paper, the iterative projection scheme is
used with the well-known SAD (norm-1) distance measure. This
is applicable since as additional projections are performed the
lower bound on the SATD is tightened. In [22], the correctness
of the iterative projection scheme with the SAD as the distance
measure is proven.

III. GRAY-CODE KERNELS

In [25] and [26], a family of filter kernels—the GCK—is in-
troduced. Filtering an image with a sequence of GCK is highly
efficient and requires only 2 operations per pixel for each filter
kernel, independent of the size or dimension of the kernel. This
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Fig. 3. Set of Gray Code Kernels and their recursive definition visualized as a binary tree. In this example, the tree is of depth k = 3 and creates 2® = 8 kernels

of length 8. Arrows indicate examples of pairs of kernels that are «-related.

family of kernels includes the WH kernels among others; thus,
it enables very efficient projection onto the WH basis vectors.
Consider first the 1-D case where signal and kernels are 1-D
vectors. Denote by Vs(k) a set of 1-D filter kernels expanded
recursively from an initial seed vector s, as follows:

v

s

s
{[ (k—1) ozkv(k 1)]} s.t.

vgk Ve VI ae {41 ~1)

9

where v indicates the multiplication of kernel v by the value
ay and [...] denotes concatenation. The set of kernels and the
recursive definition can be visualized as a binary tree of depth
k. An example is shown in Fig. 3 for & = 3. The nodes of the
binary tree at level 7 represent the kernels of 1/5(7’). The leaves
of the tree represent the eight kernels of VS(?’). The branches are
marked with the values of « used to create the kernels (where
+/— indicates +1/—1).

Denote |s| = y the length of s. It is easily shown that v is
an orthogonal set of 2* kernels of length 2¥. Furthermore, given
an orthogonal set of seed vectors $j . . . sy, it can be shown that
the union set Vs(lk) U---u Vs(k) is orthogonal with 2¥n, vectors
of length 2*¢. If n = ¢ the set forms a basis. Fig. 3 also demon-
strates the fact that the values «; . . . o, along the tree branches
uniquely define a kernel in Vs(k). The sequence @ = a1 ... vy,
a; € {+1,—1} that uniquely defines a kernel v € v s
called the a-index of v. Two kernels v;, v; € Vs(k) are de-
fined to be a-related if and only if the hamming distance be-
tween their a-index (the number of positions for which their
a-indices differ) is one. Without loss of generality, let the «-in-
dices of two a-related kernels be (g ... a.—1,+1,...q) and
(a1 ...ap-1,—1,...a;). We denote the corresponding kernels
as vy and v_, respectively. Since «; .. .,.—; uniquely defines a
kernel in Vs(rfl), two a-related kernels always share the same
prefix vector of length 2"~1¢ = A. The arrows of Fig. 3 indicate
examples of a-related kernels in the binary tree of depth k = 3.

Of special interest are sequences of kernels that are consec-
utively a-related. An ordered set of kernels vy ...v,, € Vs(k)
that are consecutively a-related form a sequence of GCK. The
sequence is called a gray-code sequence (GCS). The term gray
code relates to the fact that the series of a-indices associated
with a GCS form a gray code [29]. The kernels at the leaves of
the tree in Fig. 5 in a left to right scan, are consecutively a-re-
lated, thus forming a GCS. Note, however, that this sequence is
not unique and that there are many possible ways of reordering
the kernels to form a GCS. The main idea presented in [25] and
[26] relies on the fact that two a-related kernels share a special

relationship. Given two «-related kernels vy, v_ € Vs(k), then
ve(t) = +vp(i = A)+o_(i) +v_(s — A)
v_(i) = —v_(i — A)+vy(i) —vp(i — A). (10)

Equation (10) is the core principle behind an efficient filtering
scheme. Let b and b_ be the signals resulting from convolving
a signal = with filter kernels v and v_, respectively. Then, by
linearity of the convolution operation and by (10), we have the
following:

by(i) = +by(i—
bo(i)= —b (i —

A) +b_(i) +
A) + b (i) — (11

This forms the basis of an efficient scheme for convolving a
signal with a set of GCK. Given the result b (b_) of convolving
the signal with the filter kernel vy (v_), the result b_ (b4) of
convolving with the filter kernel v_ (v4) requires only two op-
erations per pixel independent of the kernel size. This scheme
is illustrated in Fig. 4.

Considering definition (9), and setting the prefix string to
s = [1], we obtain that V{*) is the WH basis set of order 2*.
A binary tree can be designed such that its leaves are the WH
kernels ordered in dyadic (or Paley) order [28] of increasing se-
quency and they form a GCS (i.e., are consecutively a-related).
An example for k = 2 is shown in Fig. 5 where every two con-
secutive kernels are a-related. Thus, given the result of filtering
an image with the first WH kernel, filtering with the consecutive

b_(i—A)
by(i— A).
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b_....m\ /'
A

Fig. 4. Efficient filtering using GCK. Given b_ (convolution of a signal with
the filter kernel v_), the convolution result b can be computed using 2 opera-
tions per pixel regardless of kernel size. In this example: b (i) = by (i— A) +
b_(i) +b_(i — A).

/m\

[1-1] 1

/\ /\

[llll [1-1-11] [1111] [1111
A N . \

a-related

Fig. 5. GCK with initial vector s = [1] creates the WH basis set. Using initial
vector s = [1] and depth k = 2, a binary tree creates the WH basis set of order
4. Consecutive kernels are a-related, as shown by the arrows.

kernels can be performed using only 2 operations per pixel per
kernel regardless of signal and kernel size. For separable ker-
nels, such as the WHT, the previous definitions and results can
be generalized to two (and higher) dimensions. The computation
cost remains at two operations per pixel per kernel regardless of
the dimension. For more details, the reader is referred to [26].

It was shown that successive filtering with a-related kernels
can be applied efficiently. However, the efficiency of using the
GCK in a particular application is determined not only by the
computational complexity of applying each kernel, but also by
the total number of kernels taking part in the process. This, in
turn, depends upon the order in which the kernels are applied. In
the context of pattern matching, ordering the 2-D WH kernels
in order of increasing sequency (the number of sign changes
along each dimension of the kernel - analogous to frequency),
is known to perform well on natural images due to energy com-
paction in the low order sequencies [30]. However, consecutive
kernels in the 2-D WH sequency order are not necessarily a-re-
lated; thus, they do not form a GCS. Fortunately, horizontally
or vertically neighboring kernels in the 2-D WH array are a-re-
lated, so “snake” ordering is possible, as depicted by overlaid
arrows in Fig. 6. The “snake” ordering forms a GCS and, al-
though not exactly according to sequency, captures the increase
in spatial frequency.

The linear “snake” forms a GCS, thus filtering with any kernel
in the snake-ordered sequence requires maintaining the projec-
tion onto the previous kernel in the sequence. However, by al-
lowing “nonlinear orders,” it is possible to select an ordering of
kernels such that consecutive kernels are not necessarily «-re-
lated rather every kernel is a-related to a kernel that precedes it
anywhere in the sequence. This still allows an efficient projec-
tion scheme, but incurs higher memory complexity since sev-
eral preceding projections must be maintained in memory. One
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Fig. 7. Increasing frequency ordering of WH kernels. The projection vectors of
the WHT of order n = 8. Increasing frequency ordering is depicted by overlaid
arrows and numbers.

such ordering is the nonlinear “increasing frequency” ordering
depicted in Fig. 7. The kernels in this order are arranged in in-
creasing spatial frequency, that has better energy compaction in
the first kernels compared to “snake” ordering [31]. In the algo-
rithm presented in the next section, memory complexity is not
an issue; thus, the nonlinear increasing frequency order is used.

IV. FME-GCK ALGORITHM

We propose a novel fast block motion estimation algo-
rithm—FME-GCK—based on the fast pattern matching
technique described above. The FME-GCK algorithm inherits
all the advantages of the fast pattern matching technique de-
scribed above as well as exploiting additional redundancies
inherent to the block motion estimation process. The proposed
scheme is fast and efficient, involves only integer computations
and uses sequential memory access. In contrast with classical
motion estimation algorithms, the FME-GCK enables online
adaptivity to image content (see Section VII). In block motion
estimation, every block of the reference frame forms a matching
candidate for several neighboring macroblocks in the current
frame. Additionally, the current frame forms the reference
frame of the consecutive frame in the video sequence. The
FME-GCK exploits these additional redundancies in the block
motion estimation process.
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Assume a video sequence is composed of images
Iy, I, 1I5,... of size ny X ms. Further assume that mac-
roblocks are of size k X k, and search areas are of size n X n.
Also assume that a set of m WH basis vectors {v;}["5! is
given such that every basis vector is a-related to at least one
basis vector that precedes it in the sequence. Denote by b,gj ) the
array of projection values of all blocks of image I; onto the i-th
WH basis vector v;. Denote by pgrjl).yl the £ X k macroblock
of image I; located at coordinates (x1,y1), and denote by
wa(fzjylg the candidate region of size k x k located at coordi-
nates (22,y2) in image I;_;. Denote by SA(p) the set of all
candidate regions inside the search area around macroblock p
in the preceding image. The FME-GCK operates as follows.
First, each image is projected onto the m WH basis vectors
{ vi}?;_ol using the fast GCK scheme. The resulting projections
are stored in memory. For each macroblock, candidate blocks
in the appropriate search area are tested. This is performed by
calculating the norm-1 lower bound on the distance between
the template macroblock and each candidate using the stored
projection values and (8). The ¢q candidate blocks with minimal
lower bound are selected and the actual SAD values between
these candidates and the template macroblock are calculated.
The candidate block with the minimal SAD is selected as the
best matching block.

The FME-GCK algorithm

For each image I;
N om—1
1) Project I; onto {v; }1*5" to obtain {bgj)}i:0 and store
the resulting projections in memory.
2) For each macroblock Pij1),y1

2.1) For each candidate block wi’é;fz) es A(p;jl{ 1)

2.1.1) Calculate the norm-1 lower bound on

the distance between pgfl)_yl and wi{ylz) using

N om—1 - m—1
{bz('J)}i:O and {bz('rl)}izo and (8).
; ~1
2.2) Select the g candidate blocks {wa(éjyl; }ZI: o
with the minimal lower bound. Calculate the actual
SAD between them and p;jl),yl.

, -1
2.3) Of the ¢ candidate blocks { wijzjylg }Lq: o> Select
that with the minimal SAD as the best matching

block.

A block diagram of the FME-GCK algorithm is shown in
Fig. 8. Note that image projections (step 1 in the algorithm), is
performed on both Inter and Intra frames, whereas the remaining
steps are applied only on Inter frames, where motion informa-
tion is required. Image projections are stored in memory since
they are required for motion estimation of the following frame
in the video sequence.

In order to perform efficient GCK calculations, each basis
vector should be a-related to at least one basis vector that pre-
cedes it in the sequence (from within the projection values stored
in memory). The order of kernels used within the FME-GCK
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is depicted in Fig. 7 as overlaid arrows. This “increasing fre-
quency” ordering has been chosen due to its good energy com-
paction property [31]. Step 1 of the algorithm is performed using
GCK with only 2 operations per pixel for each WH kernel. An
exception in this efficient calculation is the first kernel (DC com-
ponent) which has no preceding kernel in the sequence. The DC
component can be calculated using 4 operations per pixel as de-
scribed in [30].

Notice that the GCK approach cannot be used efficiently for
projecting macroblocks on the top and left image boundaries
due to the necessity of accessing preceding pixels A units away
in either dimensions [see (11)]. This limitation, although seem-
ingly minor, may increase algorithm complexity substantially.
In an experiment with the Foreman video sequence at CIF
(352 x 288) resolution, boundary macroblock projections were
performed by direct filtering with WH basis vectors and non-
boundary macroblock projections were performed using GCK
filtering. At CIF resolution, only about 0.7% of the candidate
regions are top or left boundary blocks, and yet projections of
these blocks were found to require about 55% of the actual cal-
culation time spent on projections. A solution to this problem
is to zero-pad the upper and left boundaries of the image with
A+ k —1rowsand A + k — 1 columns, respectively. The
size of the projection images {bgj )}:nzol increases accordingly.
However, the upper A rows and left columns of these images
{bgj )}:101 can be shown to equal zero (since projecting a zero
macroblock onto any kernel results in zero). The projection
of image blocks using the efficient GCK method is initiated
starting from the A 4+ 1 row and A + 1 column.

Step 2.1.1 of the algorithm is based on the projection frame-
work described in Section II. Although the WH basis vectors
are not orthonormal, they are orthogonal. Therefore, the term
(VTV)~1in (7) can be ignored. The projection scheme is used
with norm-1 rather than norm-2 since this forms a partial cal-
culation of the SATD distance measure shown to be effective
in block matching [32]. As additional projections are applied, a
better approximation of the SATD is obtained [22].

The FME-GCK algorithm gives good time-quality tradeoff
compared to classical fast block motion estimation techniques.
Usually, only a few projections are required for highly accurate
motion estimation. However, if m = k2 the algorithm results
are guaranteed to be identical to that of full search, though this
is not a common configuration. In this sense, FME-GCK can be
considered an approximation of a fast full search motion esti-
mation algorithm.

V. COMPLEXITY ANALYSIS

The FME-GCK algorithm uses two parameters that affect the
tradeoff between complexity and accuracy of motion estimation.
These parameters are m, the number of projections to perform
for each image, and ¢, the number of candidate macroblocks for
which the SAD value is calculated. Larger m produces more ac-
curate results at the cost of higher time and memory complexity.
Memory complexity is affected since m projections of image I;
and m projections of image I;_; must be stored in memory;
thus, memory complexity is approximately 2(m + 1) times the
size of the video frame. Larger ¢ also produces more accurate
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Fig. 8. FME-GCK algorithm.

TABLE I
COMPARISON OF ALGORITHM COMPLEXITY FOR MACROBLOCKS OF SIZE 16 X
16 AND SEARCH AREA OF SIZE 15 X 15. FME-GCK COMPLEXITY DEPENDS
ON M, THE NUMBER OF PROJECTIONS AND ¢, THE NUMBER OF CANDIDATE
MACROBLOCKS FOR WHICH THE SAD VALUE IS CALCULATED

Algorithm Complexity [ops. per MB]
Full search 172,799
Three-step search 19,199
Diamond search 11,903
FME-GCK 1187m+993q+286

results at the cost of higher time complexity; it does not, how-
ever, affect memory.

Let us assume 1 time unit for each operation of addition, sub-
traction, multiplication, absolute value, and minimum of two
numbers. Further assume a block of size k X k and search area
of size n X n. It is shown in [33] that FME-GCK requires
2k*(m + 1) + (3m — 1)n? + qn® + 3k%q — 1 time units
per template macroblock. Table I shows a comparison of full
search, three-step [5], diamond search [8], [9], and FME-GCK,
for k = 16, n = 15.

Note that when comparing the number of time units to per-
form FME-GCK with the time units to perform three-step search
or diamond search, a factor vy should multiply FME-GCK’s
complexity. The factor v is added since in FME-GCK both
Inter and Intra macroblocks must be projected, in contradic-
tion to zero calculations for Intra macroblocks incurred by the
three-step search and the diamond search. The value of v de-
pends on the intra periodicity in the video sequence. A typical
value for « is 1.10.

Considering the results in Table I, we obtain that
{m = 11,q = 4} and {m = 5,¢ = 13} are FME-GCK

TABLE II
VIDEO SEQUENCES USED FOR SIMULATION EXPERIMENTS.
FOR EACH RESOLUTION, VIDEO SEQUENCES ARE SORTED BY
ASCENDING ORDER OF ESTIMATED CODING DIFFICULTY

QCIF CIF
Akiyo Akiyo
Miss America Silent
Trevor Foreman
Carphone Tempete
Coastguard Mobile
Foreman Stefan

configurations similar in their computational complexity to
three-step search and that {m = 5,¢q = 4} is an FME-GCK
configuration similar in its computational complexity to dia-
mond search. Note that it has been verified by real-time code
profiling that these configurations are indeed similar to their
counterparts (see Section VI for details). These configurations
allow comparison of the accuracy of motion information pro-
duced by FME-GCK, three-step search, and diamond search
under the same computational constraints. It is important to
note that the theoretical complexity comparison of FME-GCK
to three-step search and to diamond search does not take into
account the fact that FME-GCK allows sequential memory
access whereas three-step search and diamond search incur
many unpredictable branches and memory accesses. This dif-
ference may have a significant effect on run times in favor of
the FME-GCK algorithm, depending on the specific hardware
configuration. For example, sequential memory access is highly
beneficial in digital signal processor (DSP) chips which are
widely used in many signal processing applications.
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Fig. 9. Effect of different values of the parameter 1 on motion estimation accuracy. Results are for a constant ¢ = 4. Full search, three-step search, and diamond
search results are displayed as a reference. FME-GCK algorithm results converge to the optimal. FME-GCK significantly outperforms three-step search and is
comparable to diamond search, when computational complexity is considered (see text).

VI. FME-GCK RESULTS

FME-GCK was implemented using a highly efficient
ANSI-C code, together with its full search, three-step, and
diamond search counterparts, in order to enable fair time and
quality comparison. Implementation was performed and mea-
sured on a Pentium 4 PC at 3 GHz running Windows XP. In
general, computational complexity was found to coincide with
theoretical complexity calculation as described in Section V.
Both diamond search and FME-GCK {m = 5, ¢ = 4} execute
on this hardware configuration at the speed of about 110 CIF
frames per second. First, an extensive set of simulations was
performed. Then, FME-GCK and its counterparts were inte-
grated with a video encoder in order to measure the effect on
real video encoding. In both simulation and video encoding
tests, motion estimation was performed with GOP size of 15,
macroblocks of size 16 x 16, and search area of size 15 x 15.

A. Simulation Results

All simulation results were obtained using the video se-
quences listed in Table II. In Fig. 9, the effect of different values
of the parameter /n on FME-GCK motion estimation accuracy
with a constant ¢ = 4 is depicted for a few representative video
sequences (the complete set of results for all video sequences
can be found in [33]). Motion estimation accuracy is measured
in mean SAD per macroblock between macroblocks and their
“best” matching counterparts. Full search, three-step search

and diamond search results are displayed as reference. As
expected, FME-GCK algorithm results converge to the optimal,
namely increasing the number of projections produces lower
SAD values, thus approaching full search SAD values. For
all video sequences except one (Tempete CIF), FME-GCK
outperforms three-step search for m = 5. For 9 out of the 12
video sequences, m = 4 is sufficient to outperform three-step
search. Note that an FME-GCK configuration equal in its com-
putational complexity to three-step search is {m = 11,q = 4};
thus, for the same motion accuracy, the gain in computation
time by using FME-GCK compared to three-step is significant.
A configuration of FME-GCK {m = 5,q = 4} comparable
in its computational time to diamond search, outperforms
diamond search only in some of the video sequences. This will
further improve in favor of FME-GCK with the introduction of
an adaptive FME-GCK in Section VII.

It is also possible to maintain the parameter 7 constant and
select different values of the parameter ¢. In this case as well, the
FME-GCK algorithm results converge to the optimal, namely
increasing the number of SAD calculation per macroblock pro-
duces lower SAD values, thus approaching full search SAD
values (see [33]).

We summarize the simulation results section by stating that
the FME-GCK algorithm significantly outperforms three-step
search and produces motion information that is almost as ac-
curate as diamond search. This will further improve in favor of
FME-GCK with the introduction of an adaptive FME-GCK.
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Fig. 10. FME-GCK rate-distortion video encoding results for Foreman CIF and Suzie Full-D1. Bitrate is given in Kbits/sec; Y-PSNR is given in decibels.
Full search, three-step search, and diamond search results are displayed as a reference. Average difference in PSNR and in bitrate is computed according to [35].
For these two video sequences, FME-GCK outperforms both three-step search and diamond search.

B. Video Encoding Results

FME-GCK and its counterparts were integrated into a real
video encoder. The standard JVT H.264/AVC reference soft-
ware [2] was used for all tests. Several code modules were sim-
plified or degenerated to comply with the FME-GCK imple-
mentation. These include: B pictures, motion estimation of sub-
macroblocks smaller than 16 X 16 in size, subpixel motion
estimation, and multiple reference frames for motion estima-
tion. All experiments were performed according to the common
testing conditions recommended in [34]. Therefore, the video
sequences that appear in Table III were coded with QP values
of 28, 32, 36, 40.

Rate-distortion results for Foreman CIF (352 x 288) and
Suzie Full-D1 (720 x 480) can be found in Fig. 10. Rate-dis-
tortion results for three-step search and diamond search are
displayed as reference. For every QP value in these figures,
distortion (PSNR) was maintained roughly constant and mean
Abitrate results are computed relative to full search according
to [35]. Smaller Abitrate indicates more accurate motion
estimation. For ten out of the eleven video sequences that
appear in Table III, FME-GCK outperforms three-step search.
For five out of these eleven video sequences, FME-GCK also
outperforms diamond search.

TABLE III
VIDEO SEQUENCES USED FOR VIDEO CODING EXPERIMENTS.
FOR EACH RESOLUTION, VIDEO SEQUENCES ARE SORTED BY
ASCENDING ORDER OF ESTIMATED CODING DIFFICULTY

QCIF CIF Full D1
Container Paris Suzie
Silent Voice Foreman Waterfall
Foreman Tempete Football

Mobile Tempete

The video coding results corroborate the simulation results
from Section VI-A. The FME-GCK algorithm significantly out-
performs three-step search and produces motion information
that is almost as accurate as diamond search. This too, will fur-
ther improve in favor of FME-GCK with the introduction of an
adaptive FME-GCK in Section VIIL.

VII. ADAPTIVE FME-GCK

An important advantage of FME-GCK compared to classical
fast block motion estimation techniques is its ability to adapt to
image content, producing a varying complexity block motion
estimation algorithm. For some video coding applications,
controlling the tradeoff between complexity and quality is a
necessity. For example, software video codec (computational
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Fig. 11. Distortion when using FME-GCK with ¢ = 4 and different values of
m. Results are for the Akiyo and Stefan video sequences in CIF resolution.
Akiyo is easy-to-code while Stefan is difficult-to-code. For both sequences,
larger values of m (more projections) result in smaller distortion, but the ex-
pected improvement in coding efficiency is substantially larger for Stefan com-
pared to Akiyo.

complexity depends on the available processing resources),
power-limited video codec (computational complexity depends
on the power consumption budget), and multichannel video
coding (computational resources are divided between different
coding processes) [36]. Furthermore, even if not a necessity, an
adaptive varying complexity may improve motion estimation
accuracy compared with a nonadaptive method. In all sce-
narios, desired algorithm complexity may depend on external
parameters, on the characteristics of the input video sequences,
or on both. Since external parameters are application specific,
we focus on adaptively changing FME-GCK parameters based
only on the characteristics of the input video sequence.

Some video scenes are more difficult-to-code than others;
Material containing an abundance of spatial detail and/or rapid,
possibly nontranslational, movement generally requires more
encoded bits than material containing little detail and/or simple
motion. The more difficult-to-code material is not modeled well
by the translational block-based motion model used in modern
video coders, thus resulting in relatively large values in the
residual signal, which, in turn, require many bits to code. Thus,
the coding efficiency of these video scenes is relatively low.
Increasing the computational resources for motion estimation
of difficult-to-code scenes, if performed wisely, should improve
their coding efficiency.

FME-GCK uses two parameters that affect the tradeoff
between complexity and accuracy of resulting motion vectors.
These parameters are m, the number of projections to perform
for each image, and ¢, the number of candidate macroblocks
for which the SAD value is calculated (Step 2.2 in algorithm).
Larger m and larger ¢ produce more accurate results at the cost
of higher (time and memory) complexity.

Fig. 11 shows the mean SAD between macroblocks and their
“best” matching regions in the previous frame for the sequences
Akiyo and Stefan of length 300 frames each in CIF resolu-
tion. Akiyo is a “talking head” sequence with a small amount
of simple motion whereas the Stefan sequence comprises of
complex local and global motions. The matching regions were
found by FME-GCK with constant ¢ = 4 and with different
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values of m. Since Akiyo is easy-to-code, its residual signal is
small, and since Stefan is difficult-to-code, its residual signal
is substantially larger. The difference is more than an order of
magnitude. As expected, for both sequences, larger values of m
(more projections), produce a smaller residual signal. More im-
portantly, however, is the fact that increasing the number of pro-
jections produces a reduction in SAD substantially greater for
the Stefan sequence than for the Akiyo sequence. For example,
increasing the number of projections from 2 to 3 reduces the
mean SAD per macroblock in the Stefan sequence by 328.29.
On the other hand, reducing the number of projections from 3
to 2 increases the mean SAD per macroblock sequence in the
Akiyo sequence only by 23.66. Thus, using more projections
for Stefan is much more effective in raising mean coding ef-
ficiency than using more projections for Akiyo. The same ob-
servation is also depicted in Fig. 12 which displays the change
in mean SAD when transitioning from m = 5 projections to
m = 6 projections (maintaining constant ¢ = 4) for different
CIF video sequences. As in Fig. 11, more difficult-to-code video
sequences result in a larger change in distortion. Note that since
mean SAD is a measure of subjective image quality (though not
a very good one), using more projections for difficult-to-code
video sequences increases their subjective quality and assists in
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Fig. 14. Adaptive FME-GCK results for a concatenation of the six QCIF (left) and six CIF (right) video sequences listed in Table II. Different time-accuracy
tradeoffs are produced according to threshold selection. For the same computational complexity, adaptive FME-GCK outperforms diamond search.

equating image quality across different video scenes. Similar
conclusions can be deduced when ¢ varies and m is maintained
constant.

Thus, when a large set of video sequences with varying
coding difficulties are to be coded, maintaining a balance
of subjective quality across sequences can be obtained by
selecting larger values of m and ¢ for more difficult-to-code
video sequences at the expense of lower parameter values for
easy-to-code sequences. Transition thresholds on the coding
difficulty can be determined when the number of projections 1,
or the number of SAD computations g, are to increase/decrease.

In order to change m and ¢ dynamically during coding, an es-
timate of the coding difficulty of the current frame/macroblock
must be determined. The average SAD per macroblock of a se-
quence obtained using full-search is a measure of coding diffi-
culty (as used in Figs. 12 and 13). Unfortunately, this measure
is not available during coding. An estimate of the full-search
SAD (and, thus, of the coding difficulty) can be obtained from
the residual of the previous frame, i.e. from the SAD available
during coding using FME-GCK. However, this SAD value is
dependant of the values of m and ¢ as shown in Fig. 13. The
figure depicts the average SAD values obtained during coding
using FME-GCK for various video sequences as a function of
the coding difficulty (measured as full-search SAD). Three plots
are shown corresponding to m = 2, 3, and 4, with ¢ = 4 in all
cases. Using this figure, given the run-time SAD and given the
number of projections m, the coding difficulty of the current
frame can be determined. In Fig. 13, two transition thresholds
are marked (! = 1000 and ¢ = 1800 corresponding to transi-
tions from 2 to 3 projections and from 3 to 4 projections, respec-
tively). For example, if m = 4 and resulting SAD equals 2000,
then the frame coding difficulty is evaluated as 1800 whereas if
m = 2 then a SAD of 1500 would be associated with this level
of coding difficulty. A similar figure can be used for varying ¢
and constant m.

We note that the change in m, the number of projections to
perform, is associated with a complete frame. On the other hand,
adaptivity of g, the number of candidate macroblocks for which
the SAD value is calculated, is applied at the macroblock level
with ¢ varying as a function of coding difficulty of each mac-
roblock. Thus, controlling g requires a local estimate of coding
difficulty. We further note that whereas the change in m affects

both memory and time complexity, change in ¢ does not af-
fect memory at all. Additionally, note that, since computation
of lower bounds requires current and previous frames, a change
in m takes affect with one frame of delay.

Following are adaptive FME-GCK simulation results with a
constant ¢ = 4 and with variable values of the parameter m.
The size of the residual of every frame was used as a simple
coding difficulty estimate of its consecutive frame. This coding
difficulty estimate is used to determine the transition between
m values. As before, macroblocks are of size 16 x 16 and
search area is of size 15 x 15. Fig. 14 shows time, measured in
operations per macroblock, versus motion accuracy, measured
in mean SAD per macroblock, for a video sequence that is
a concatenation of all six QCIF (left) and CIF (right) video
sequences listed in Table II. Results are plotted for different
configurations of transition thresholds. In all configurations,
more projections are preformed for more difficult-to-code
scenes and fewer projections are performed for easier-to-code
video scenes. Using adaptivity, the mean SAD for the con-
catenated video sequence is reduced. One adaptive FME-GCK
configuration of m-threshold (marked with circle in Fig. 14)
is of similar computation complexity as the diamond search
(marked with asterisk in Fig. 14), yet outperforms it. We
conclude that if thresholds are appropriately selected, adaptive
FME-GCK outperforms diamond search on average. It should
be noted that a residual based coding difficulty estimate was
used to produce Fig. 14. A more sophisticated estimate is
expected to improve adaptive FME-GCK performance. Such
an estimate can also be used to adaptively control the parameter
q to further improve FME-GCK performance.

VIII. CONCLUSION

In this paper, a novel fast block motion estimation algorithm,
FME-GCK, was presented. FME-GCK uses an efficient pro-
jection framework that bounds the distance between a template
block and candidate blocks using highly efficient filter kernels.
Candidate regions that are distant from the template macroblock
are quickly rejected using a rapid computation of lower bounds.
For the few remaining candidate blocks, the SAD distortion
measure is used. The FME-GCK algorithm enables flexibility in
the tradeoff between coding efficiency and computational com-
plexity by allowing adaptivity of the motion estimation process

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on October 6, 2009 at 01:54 from IEEE Xplore. Restrictions apply.



2254

based on image content and complexity limitations. Algorithm
results are guaranteed to converge to the optimal (full search)
with the increase of allowed computation. When tuned to com-
putational complexity equal to that incurred by three-step search
or by diamond search, and when adaptivity parameters are ap-
propriately selected, the FME-GCK algorithm significantly out-
performs both three-step search and diamond search. In addi-
tion, FME-GCK incurs only integer arithmetic and sequential
memory access; thus, it is appropriate for embedded systems
or for any other application where the constraints on memory
complexity are not very tight. FME-GCK currently supports
only a fixed block size. In order to use FME-GCK in video
coders that support adaptive block size motion estimation (e.g.,
H.264/AVC), the algorithm should be extended with some fast
heuristics to ignore nonreasonable block sizes.
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